Software Verification (Autumn 2014) Lecture 5: Separation Logic Parts I - II

Chris Poskitt

A recent separation logic success story

theguardian

News | Sport | Comment | Culture | Business | Money | Life & style

News | Technology | Facebook |

Facebook buys code-checking Silicon Roundabout startup Monoidics

Acquisition of company which carries out tests to find crashing bugs will see its technology applied to mobile apps and site

The Telegraph

Facebook buys UK startup Monoidics

Facebook has acquired assets behind Monoidics, a London-based startup whose technology is used to detect coding errors.

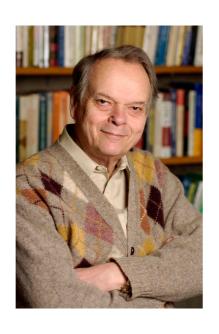
Main sources for these lectures

Peter W. O'Hearn:

A primer on separation logic (and automatic program verification and analysis)

In: Software Safety and Security: Tools for Analysis and Verification. NATO Science for Peace and Security Series, vol. 33, pages 286-318, 2012

Main sources for these lectures



Peter W. O'Hearn, John C. Reynolds, Hongseok Yang

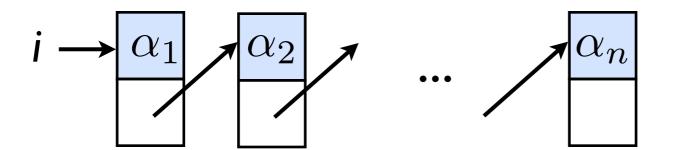
Local Reasoning about Programs that Alter Data Structures

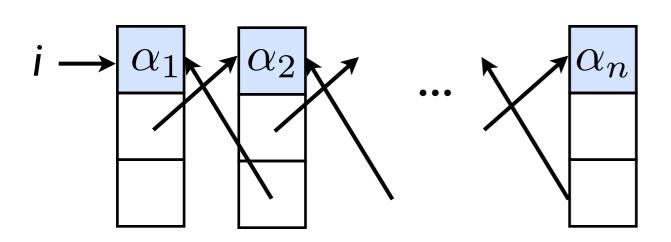
CSL '01. Volume 2142 of LNCS, pages 1-19. Springer, 2001.

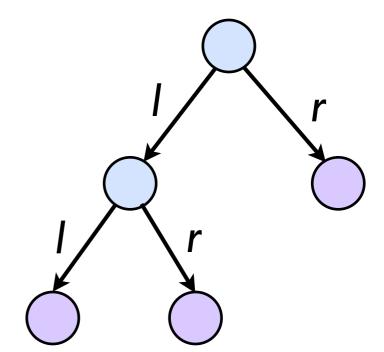
What is separation logic for?

- for reasoning about shared mutable data structures in imperative programs
 - structures where an updatable field can be referenced from more than one point
 - correctness of such programs depends upon complex restrictions on sharing
 - classical methods like Hoare logic suffer from extreme complexity; reasoning does not match programmers' intuitions

Some shared mutable data structures





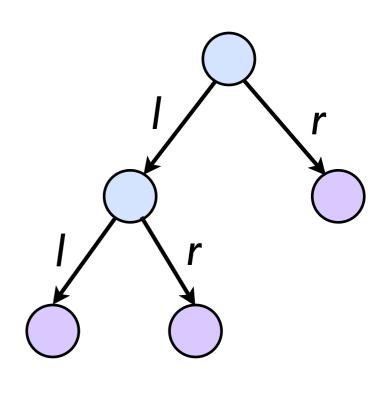


Problem illustration

(from O'Hearn)

• the following program disposes the elements of a tree

```
procedure DispTree(p)
local i, j;
if ¬isatom?(p) then
    i := p > 1;
    j := p > r;
    DispTree(i)
    DispTree(j)
    dispose(p)
```



• can we prove its correctness using classical Hoare logic?

Problem illustration: Hoare logic

here is a possible specification:

```
{ tree(p) ∧ reach(p,n) }
  DispTree(p)
{ ¬allocated(n) }
```

i.e. if before execution there is a node n in the tree that p points to, then after execution, n is not allocated

have we specified enough?

Problem illustration: Hoare logic

 what does DispTree(p) do to nodes outside of the tree p?

```
procedure DispTree(p)
local i, j;
if ¬isatom?(p) then
    i := p > 1;
    j := p > r;
    DispTree(i)
    DispTree(j)
    dispose(p)
```

```
specification too weak!
does not rule out that DispTree(i)
did not alter subtree j...
...might no longer be a tree!
(precondition violation)
```

```
{ tree(i) ∧ reach(i,n) }

DispTree(i)

¬allocated(n) }
```

Problem illustration: Hoare logic

can strengthen the specification with frame axioms
 i.e. clauses specifying what does not change

```
{ tree(p) \land reach(p,n) \land ¬reach(p,m) \land allocated(m) \land m.f = m' \land ¬allocated(q) }
   DispTree(p)
{ ¬allocated(n) \land ¬reach(p,m) \land allocated(m) \land m.f = m' \land ¬allocated(q) }
```

- complicated; certainly does not scale!
- does not match the intuition that programmers use

How does separation logic help?

- separation logic <u>extends</u> Hoare logic to facilitate local reasoning
- assertion language offers spatial connectives, allowing one to reason about smaller parts of the program state

$$p * q$$

- this locality allows us to:
 - avoid mentioning the frame in specifications
 - but to bring the frame condition in when needed

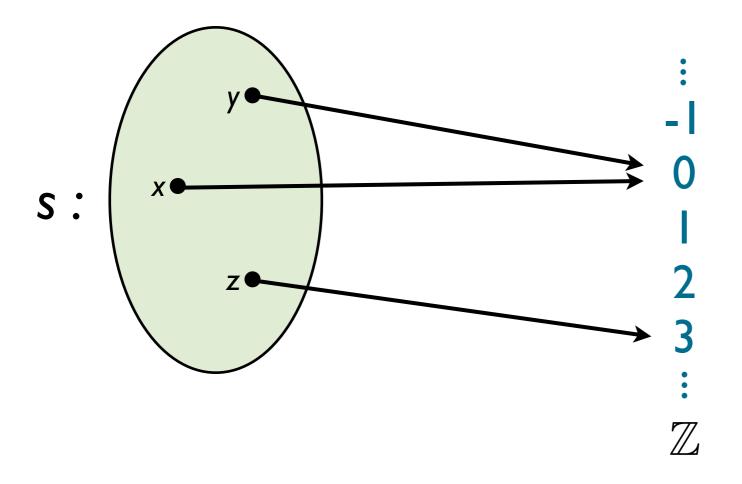
Next on the agenda

- (I) model of program states for separation logic
- (2) assertions and spatial connectives
- (3) axioms and inference rules
- (4) program proofs

Recap: program states

• in Hoare logic a program state comprises a variable store

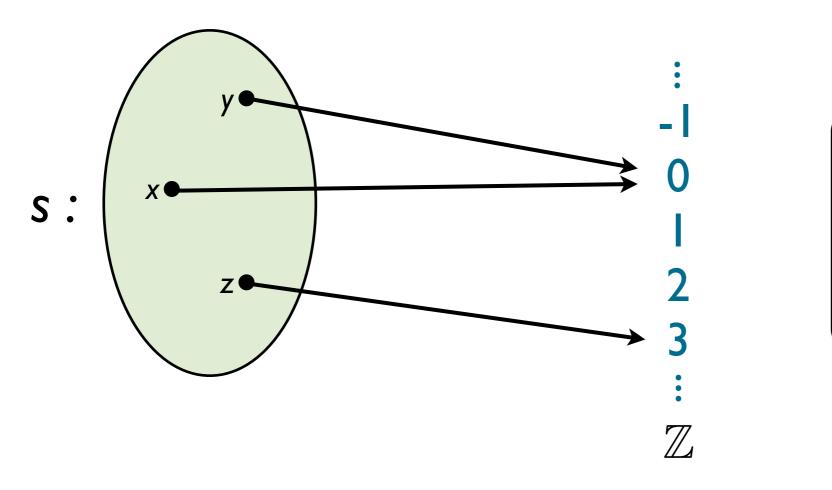
i.e. a partial function mapping variables to integers



Recap: program states

• in Hoare logic a program state comprises a variable store

i.e. a partial function mapping variables to integers



$$s(x) = 0$$

$$s(y) = 0$$

$$s(z) = 3$$

Recap: satisfaction of assertions

• we write $s \models p$ if store s (i.e. a program state) satisfies assertion p

• typically |= is defined inductively

```
s \models p \land q \text{ if } s \models p \text{ and } s \models q

s \models \exists x. \ p \text{ if there exists some integer } v \text{ such that } s[x \mapsto v] \models p

\vdots

s \models B \text{ if } [|B|]s = \text{true}
```

(where [B]s denotes the evaluation of B w.r.t. s)

Recap: satisfaction of assertions

For example:

$$(x \mapsto 5, y \mapsto 10) \models x < y \land x > 0$$
$$(x \mapsto 25) \models \exists y. \ y > x$$
$$(x \mapsto 0) \nvDash \exists y. \ y < x \land y \ge 0$$

The Heaplet model

 in separation logic, program states comprise both a variable store <u>and</u> a heap

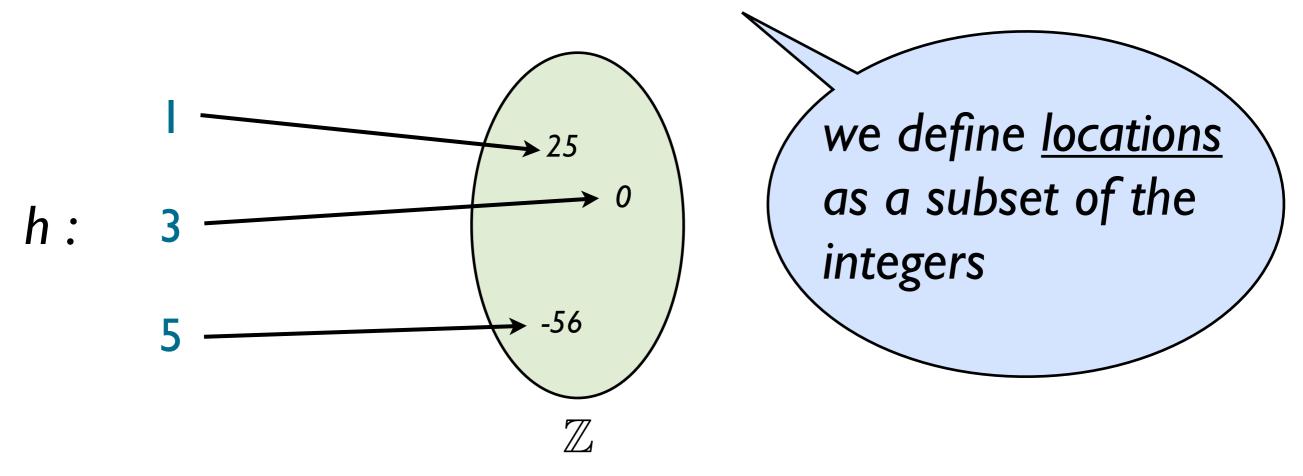
i.e. a function mapping locations (pointers) to integers

we define <u>locations</u> as a subset of the integers

The Heaplet model

 in separation logic, program states comprise both a variable store <u>and</u> a heap

i.e. a function mapping locations (pointers) to integers



The Heaplet model

• the store: state of the local variables

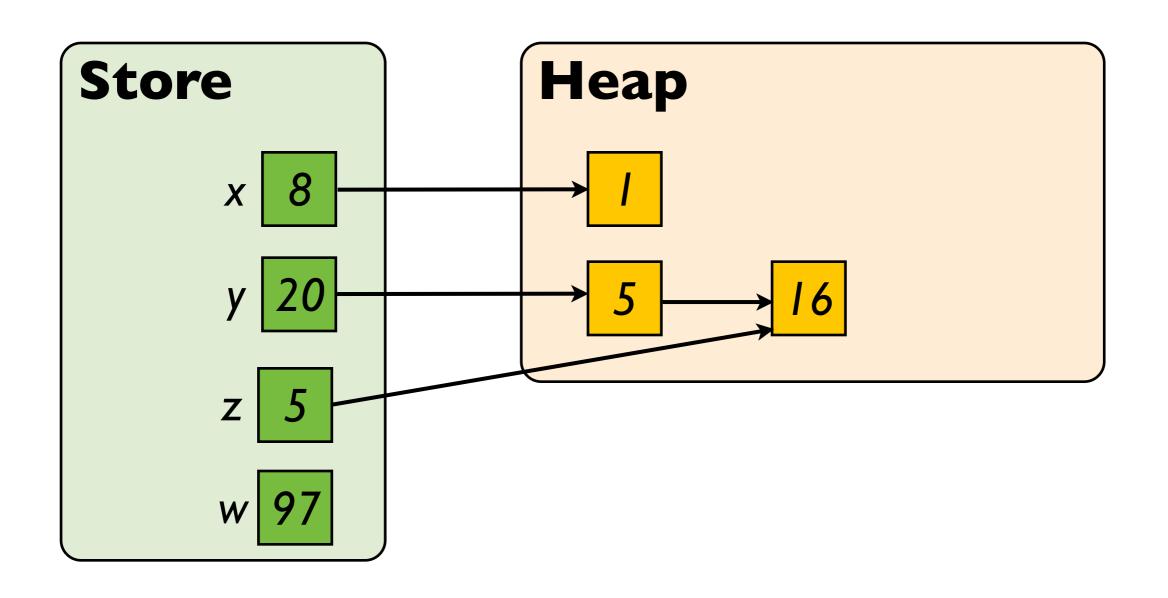
$$Variables \rightarrow Integers$$

• the heap: state of dynamically-allocated objects

Locations
$$\rightarrow$$
 Integers

where: Locations \subseteq Integers

Example store and heap



Next on the agenda

(I) model of program states for separation logic

- (2) assertions and spatial connectives
- (3) axioms and inference rules
- (4) program proofs

Syntax of assertions

false	logical false		
$p \wedge q$	classical conjunction		
$p \vee q$	classical disjunction		
$p \Rightarrow q$	classical implication		
p * q	separating conjunction	1	chatial accortions
$p - \!\!\!* q$	separating implication	}	spatial assertions
e = f	equality of expressions		
$e \mapsto f$	points to (in the heap)	1	hoab assortions
emp	empty heap	5	heap assertions
$\exists x. p$	existential quantifier		

(e, f range over integer expressions; x over variables; p, q over assertions)

Semantics of assertions

• we write $s,h \models p$ if store s and heap h (together the program state) satisfies assertion p

$$s, h \models \text{false}$$
 never
 $s, h \models p \land q$ if $s, h \models p \text{ and } s, h \models q$
 $s, h \models p \lor q$ if $s, h \models p \text{ or } s, h \models q$
 $s, h \models p \Rightarrow q$ if $s, h \models p \text{ implies } s, h \models q$
 $s, h \models e = f$ if $[|e|]s = [|f|]s$

(where [|e|]s denotes the evaluation of e with respect to s)

Semantics of empty heap

 the semantics of the remaining assertions all rely on the heap h

$$s, h \models \text{emp} \quad \text{if} \quad h = \{\}$$

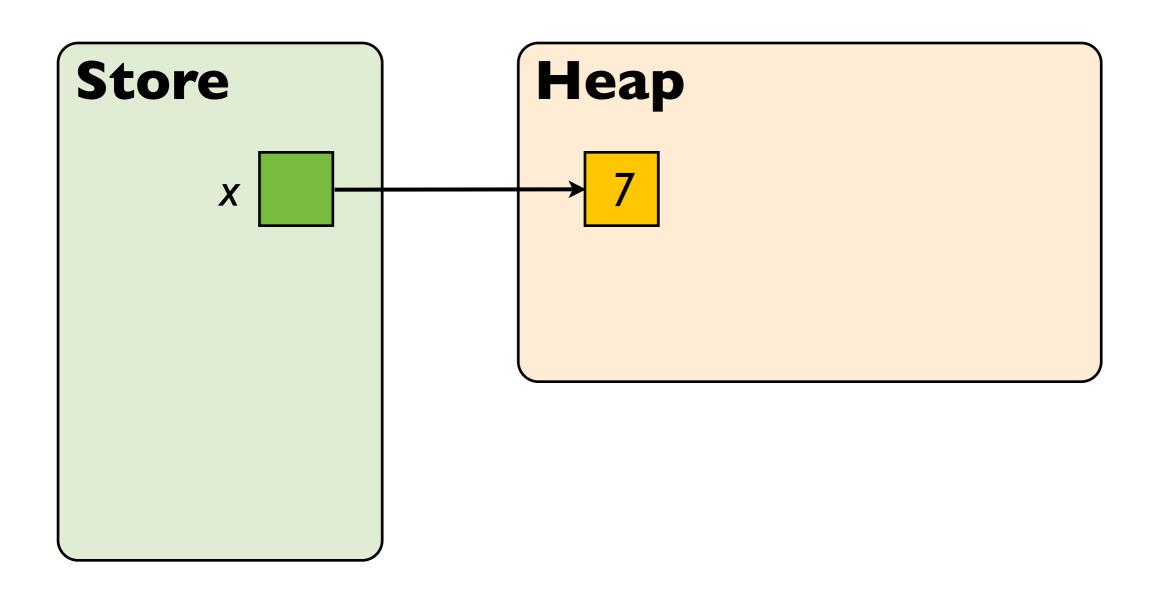
Semantics of points to

$$s, h \models e \mapsto f$$
 if $h = \{[|e|]s \mapsto [|f|]s\}$

the heap h has <u>exactly</u> one location: the value of e... ...and the contents at that location is the value of f

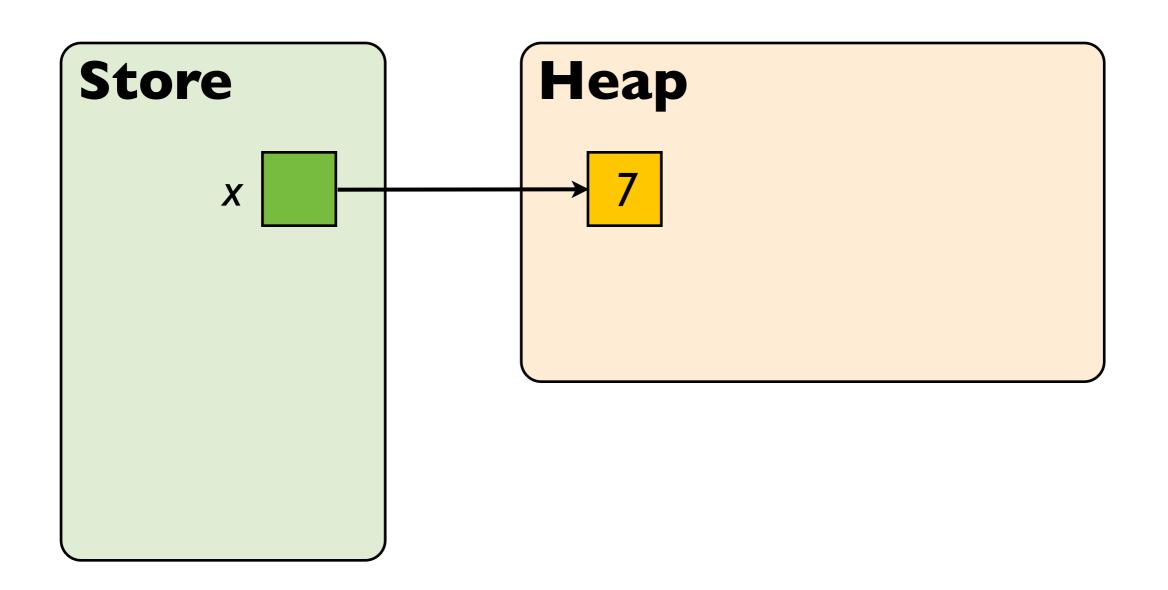
what about larger heaps?

Example of points to



Example of points to

$$x \mapsto 7$$



Semantics of separating conjunction

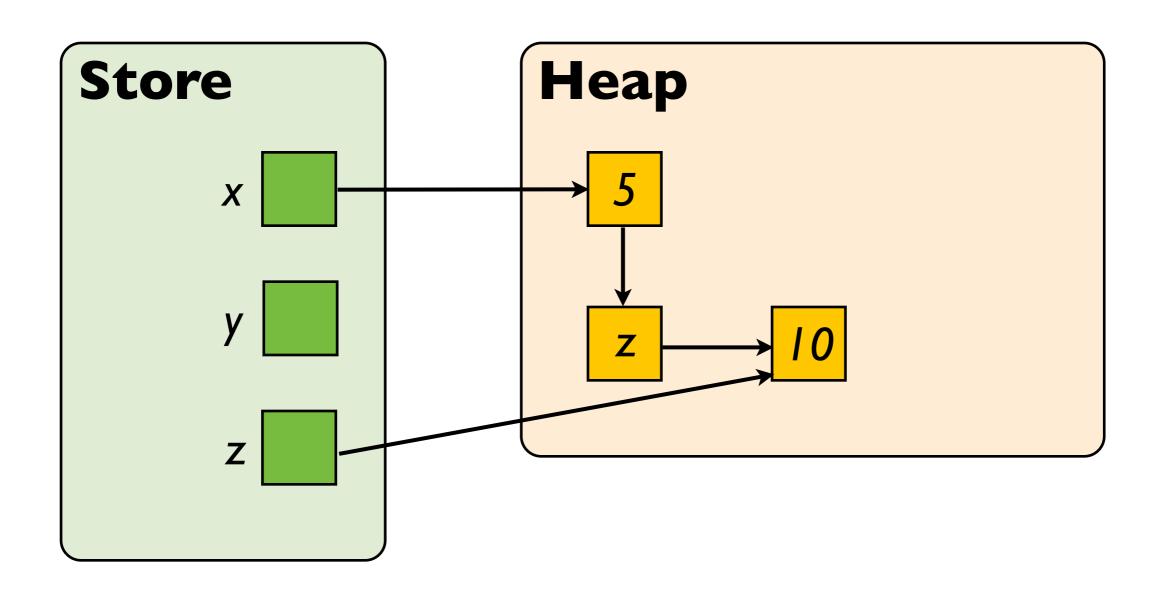
$$s, h \models p * q$$

informally: the heap h can be divided in two so that
 p is true of one partition and q of the other

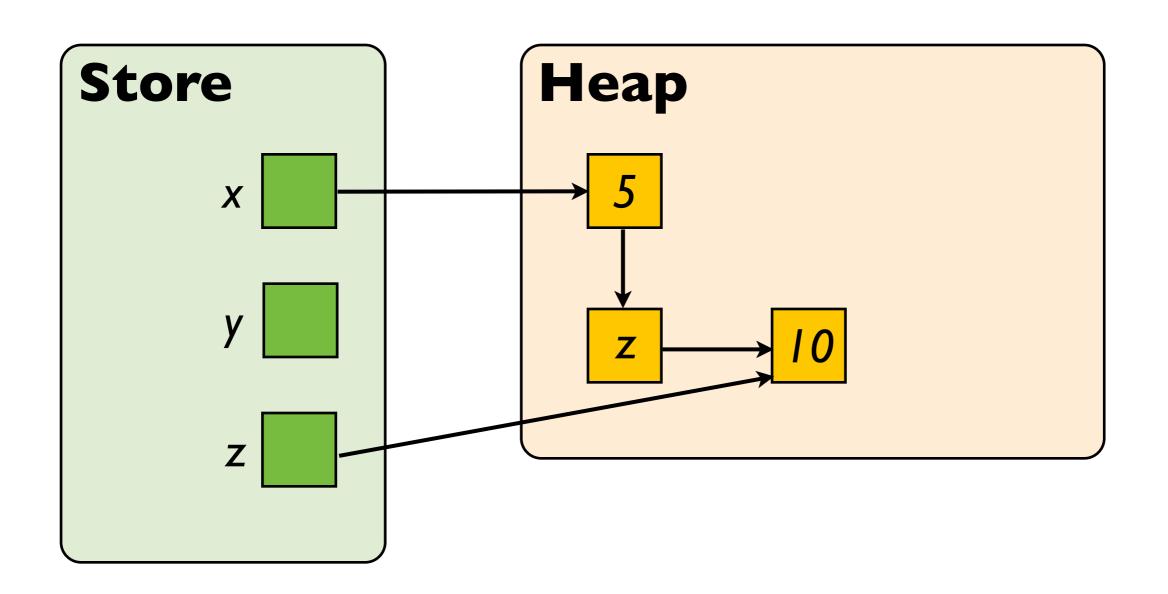
Semantics of separating conjunction

$$s, h \models p * q$$

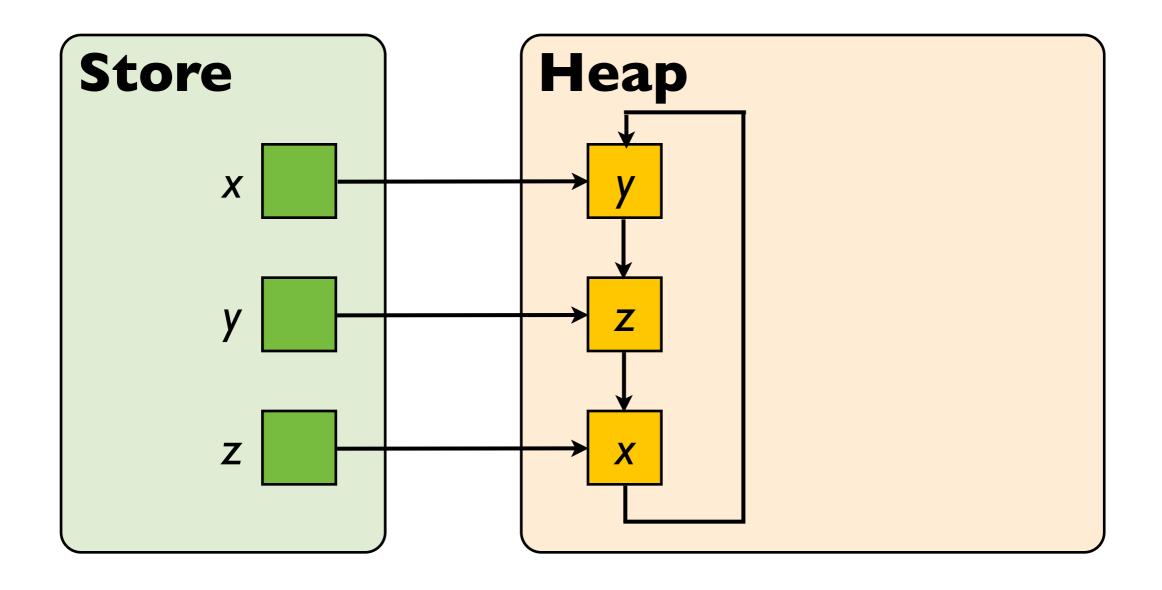
informally: the heap h can be divided in two so that
 p is true of one partition and q of the other



$$x \mapsto 5 * 5 \mapsto z * z \mapsto 10$$

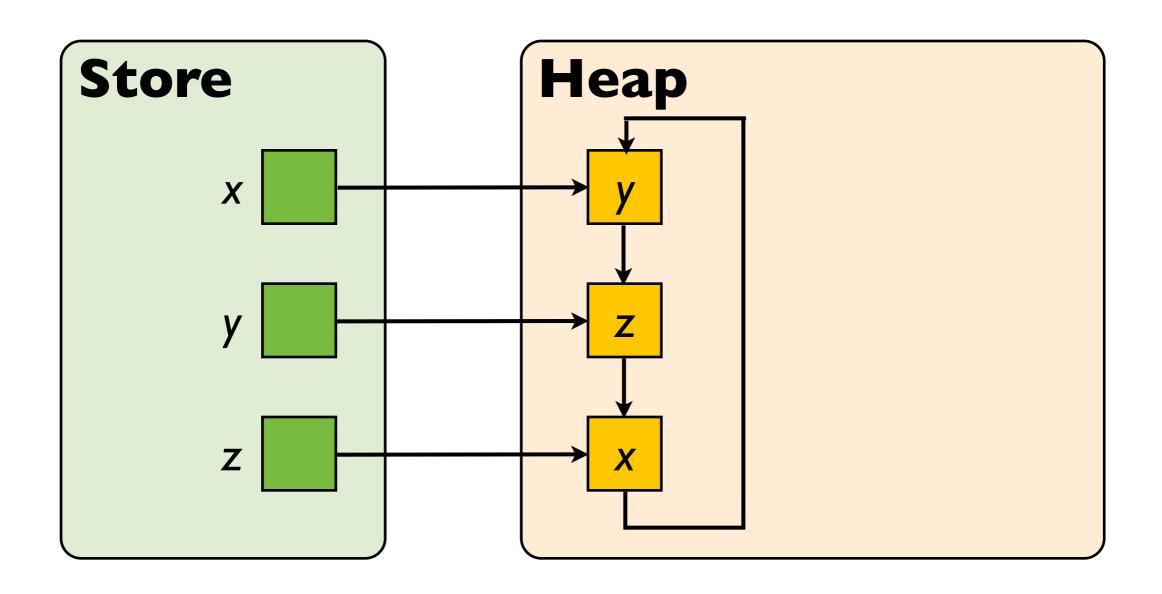


(from Calcagno)



(from Calcagno)

$$emp * x \mapsto y * y \mapsto z * z \mapsto x$$

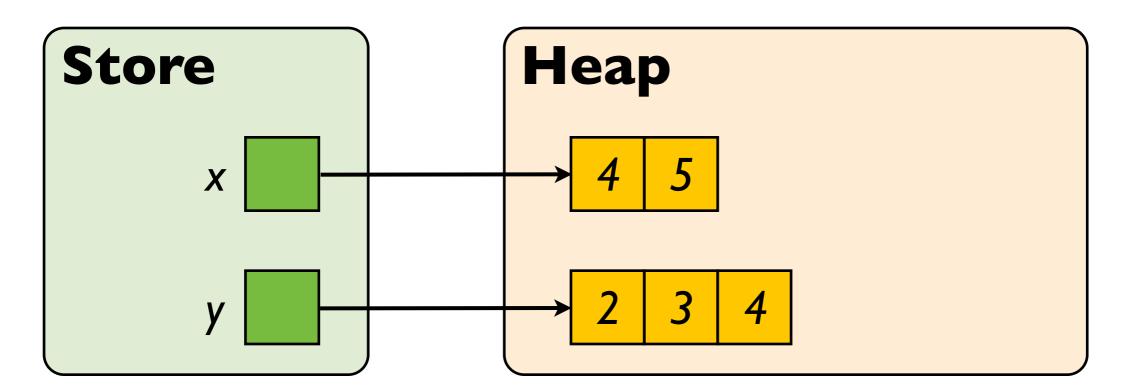


Notation

let
$$e\mapsto f_0,\dots,f_n$$
 abbreviate $e\mapsto f_0*e+1\mapsto f_1*\dots*e+n\mapsto f_n$

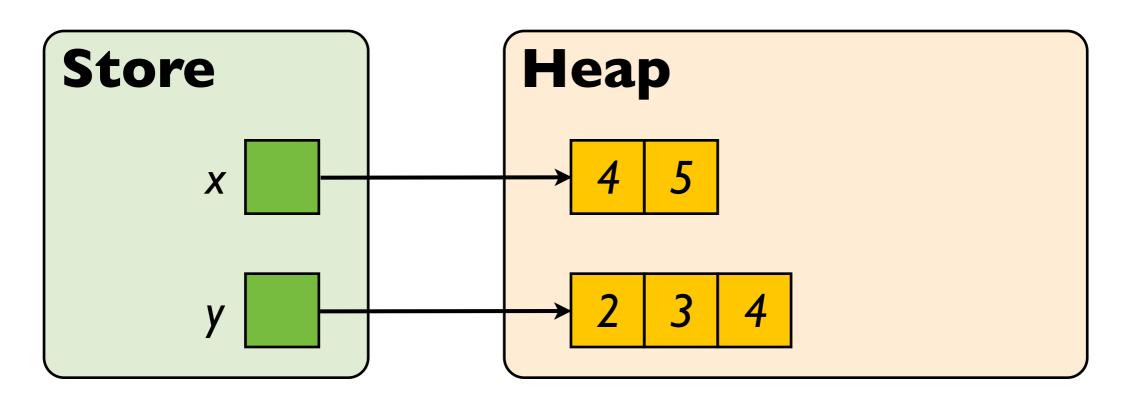
Notation

let $e\mapsto f_0,\dots,f_n$ abbreviate $e\mapsto f_0*e+1\mapsto f_1*\dots*e+n\mapsto f_n$



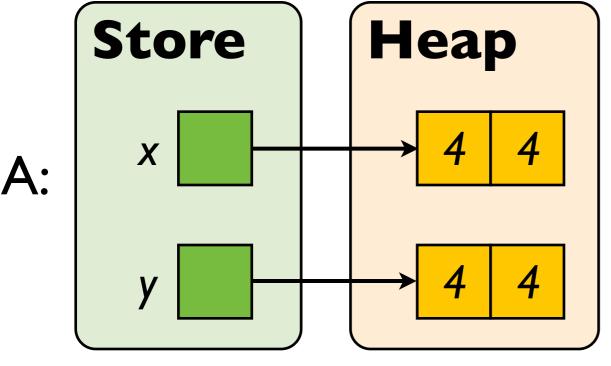
Notation

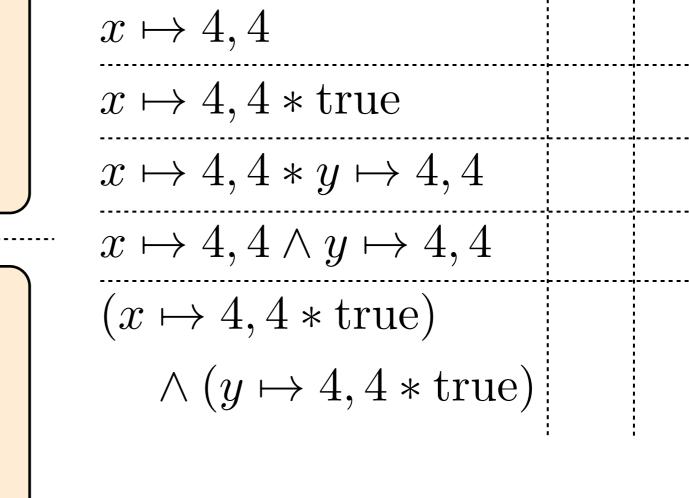
let $e\mapsto f_0,\dots,f_n$ abbreviate $e\mapsto f_0*e+1\mapsto f_1*\dots*e+n\mapsto f_n$

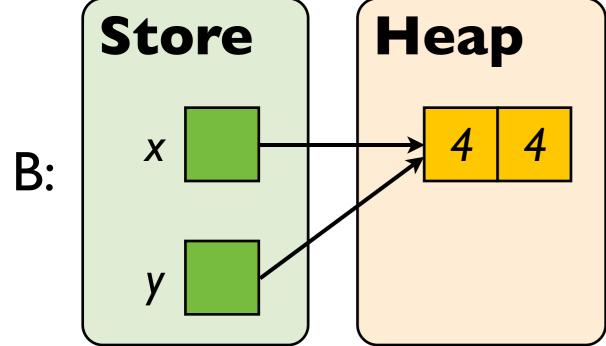


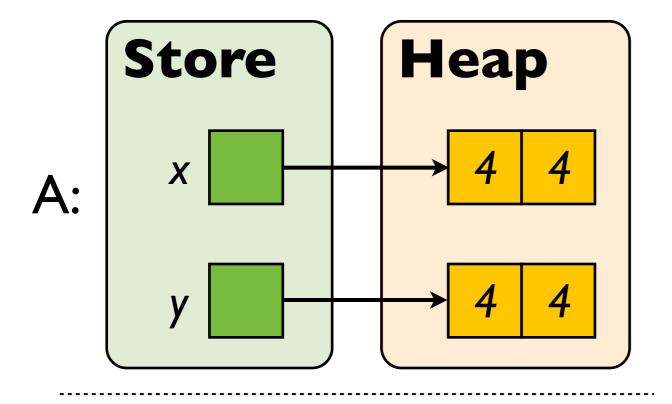
$$x \mapsto 4, 5 * y \mapsto 2, 3, 4$$

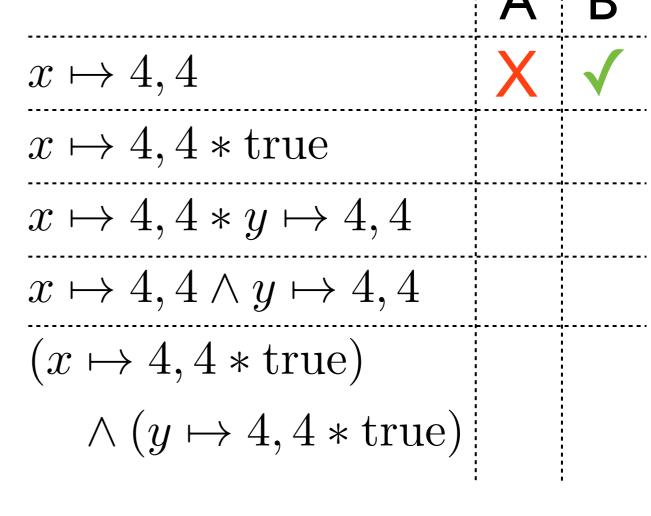
$$x \mapsto 4, 5 * true$$

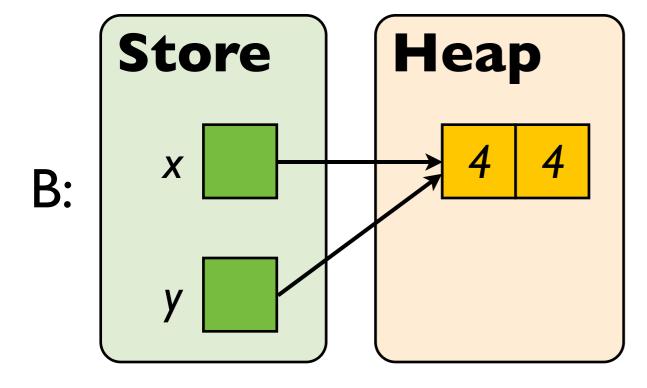


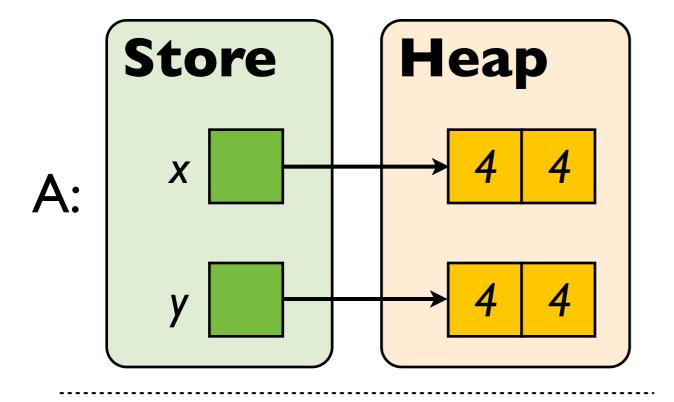


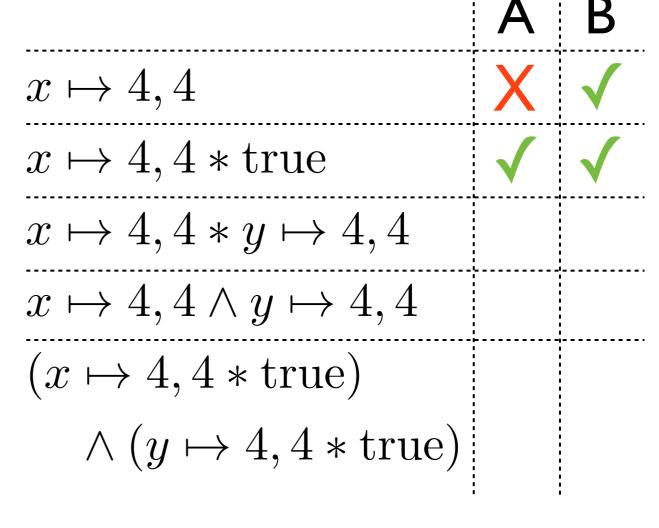


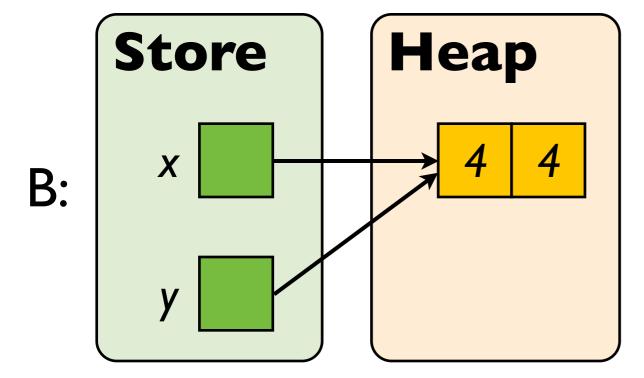


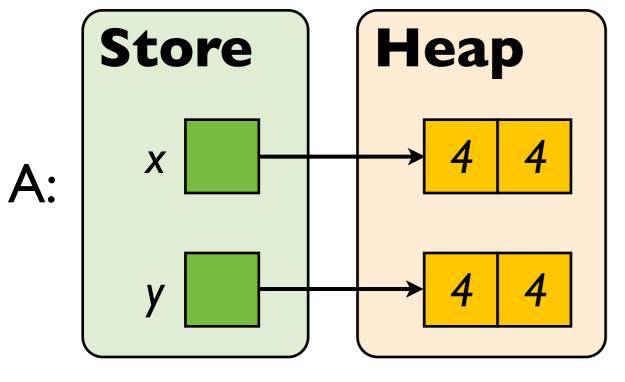


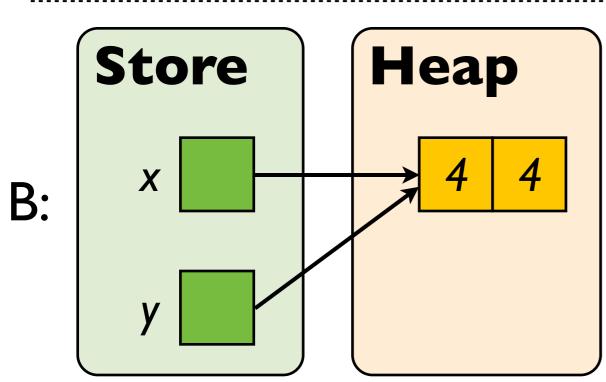


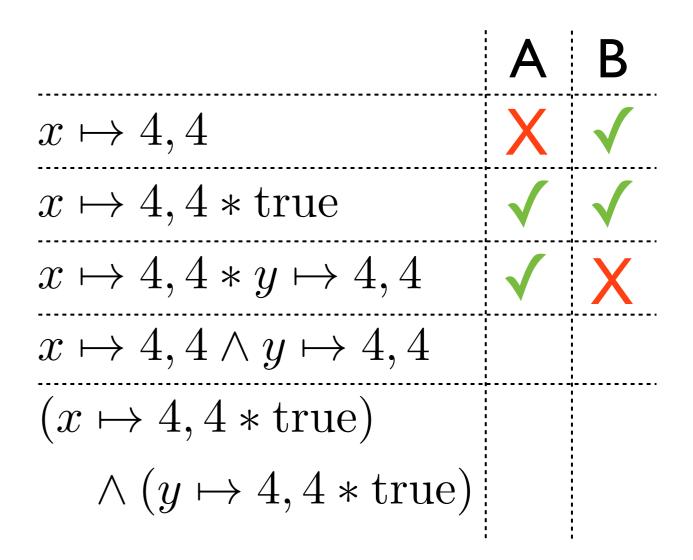


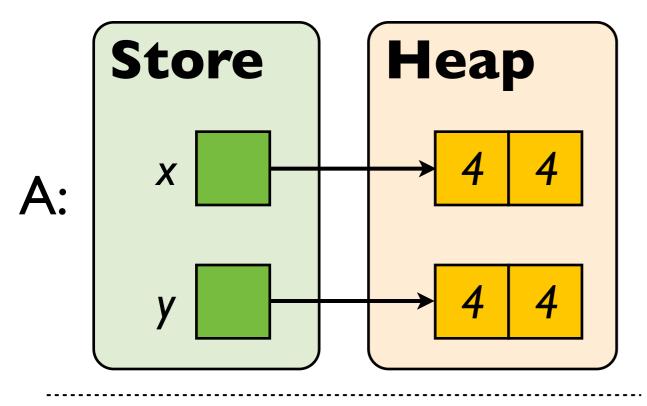


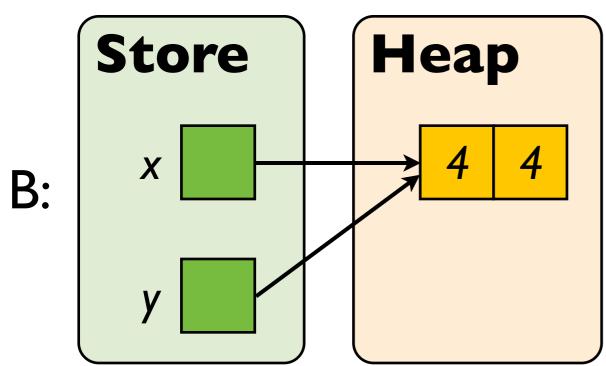


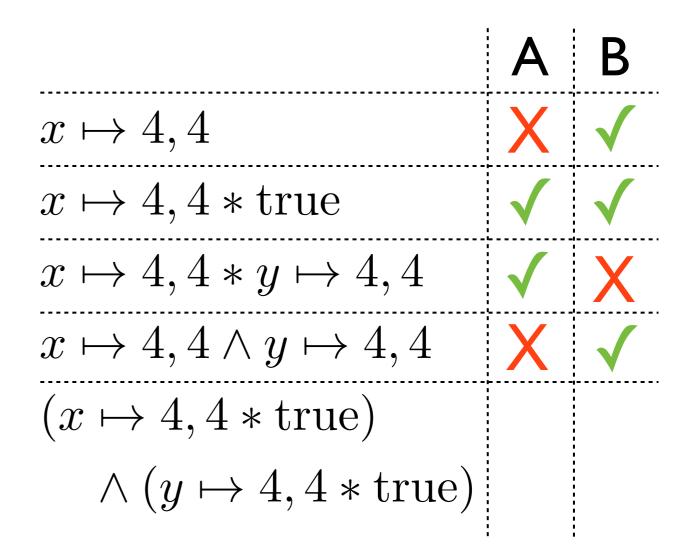


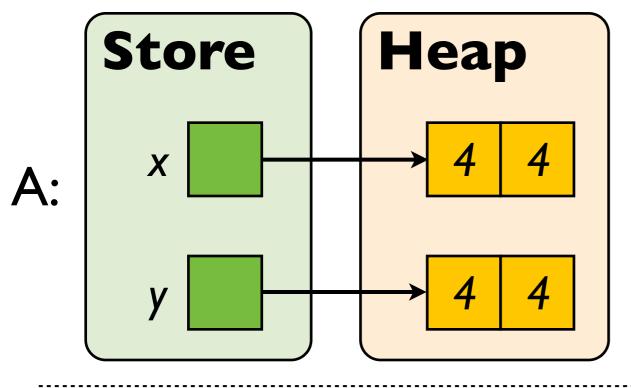


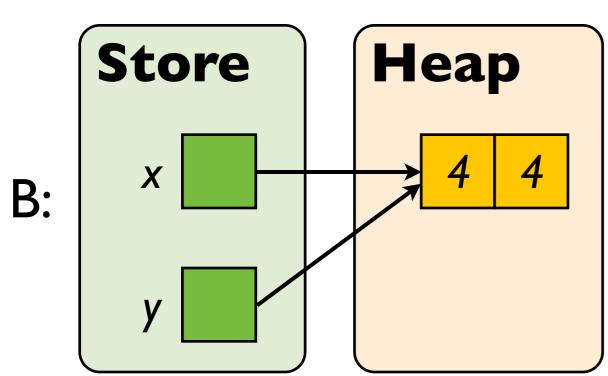


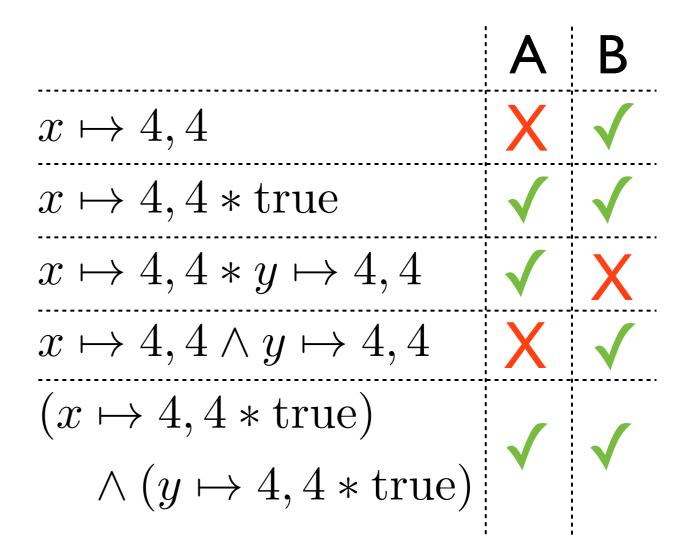












Semantics of separating implication

$$s, h \models p \twoheadrightarrow q$$

- aka the magic wand
- informally: asserts that extending h with a disjoint part h' that satisfies p results in a new heap satisfying q
- metatheoretic uses, e.g. proving completeness results

∧ versus *

(from Parkinson)

Similarities

$$p \wedge q \quad \text{iff} \quad q \wedge p \qquad \qquad p * q \quad \text{iff} \quad q * p$$

$$p \wedge \text{true} \quad \text{iff} \quad p \qquad \qquad p * \text{emp} \quad \text{iff} \quad p$$

$$p \wedge (p \Rightarrow q) \quad \text{implies} \quad q \qquad \qquad p * (p \twoheadrightarrow q) \quad \text{implies} \quad q$$

Differences

$$p$$
 implies $p \wedge p$ one does not imply one $*$ one $p \wedge p$ implies p one $*$ one does not imply one

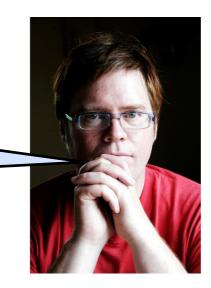
where one is defined by: $\exists x, y. \ x \mapsto y$

$$P \wedge \neg P$$
 $P * \neg P$

 $P \wedge \neg P$

P * ¬P

"to understand separation logic assertions you should always think locally"



Next on the agenda

- (I) model of program states for separation logic
- (2) assertions and spatial connectives
- (3) axioms and inference rules
- (4) program proofs

variable assignment

$$v := [e]$$

fetch assignment

$$[e] := f$$

heap mutation

$$v := cons(el, ..., en)$$

allocation assignment

pointer disposal

variable assignment

fetch assignment

- evaluate e (with respect to store) to get a location I
- fault if I is not in the heap
- otherwise assign contents of I in heap to variable v

variable assignment

heap mutation

- evaluate e (with respect to store) to get a location I
- fault if I is not in the heap
- otherwise assign value of f as contents of I in the heap

$$v := e$$

variable assignment

- choose n consecutive locations not in the heap
- ...say 1, 1+1, ...
- extend the heap by adding I, I+I, ... to it
- assign I to variable v in the store
- assign values of el,..., en to contents of l, l+l,...

$$v := cons(el, ..., en)$$

v := cons(e1, ..., en) allocation assignment

v := e

variable assignment

- evaluate e (with respect to store) to get a location l
- fault if I is not in the heap
- otherwise remove I from the heap

dispose(e)

pointer disposal

$$[e] := f$$

$$v := cons(e1, ..., en)$$

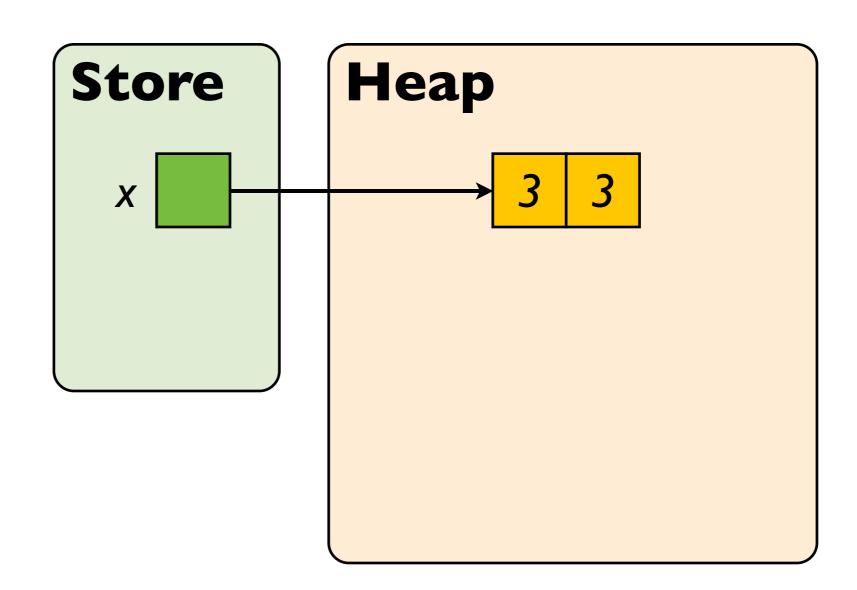
(from Parkinson)

```
x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];
```

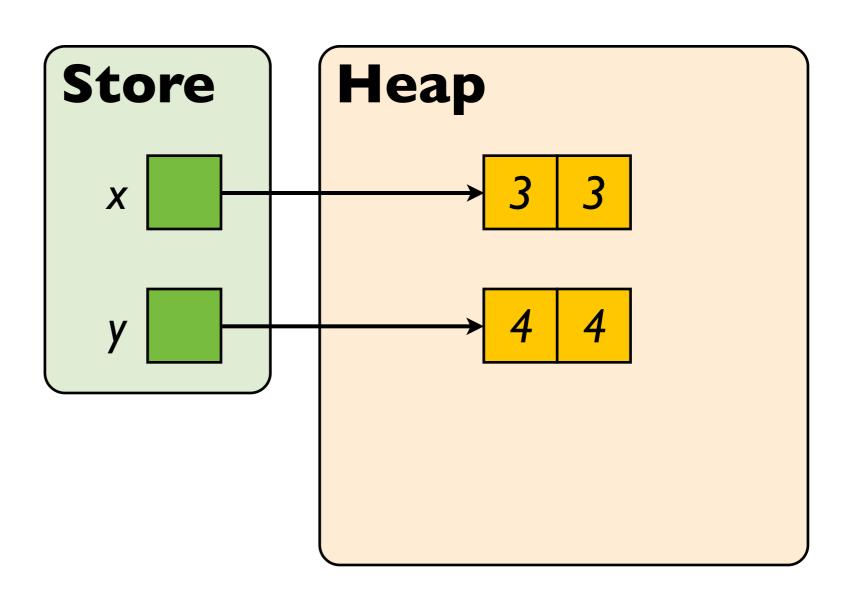
Store

Heap

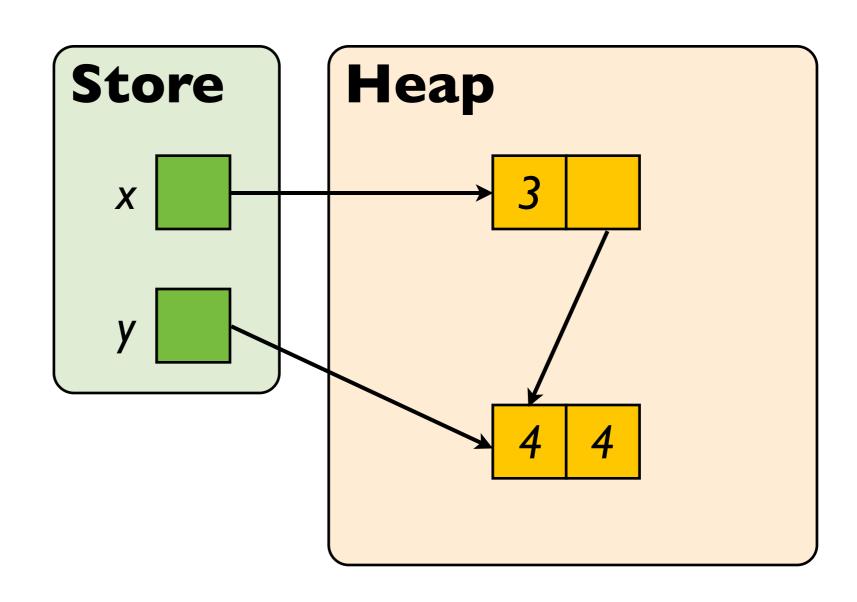
```
x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];
```



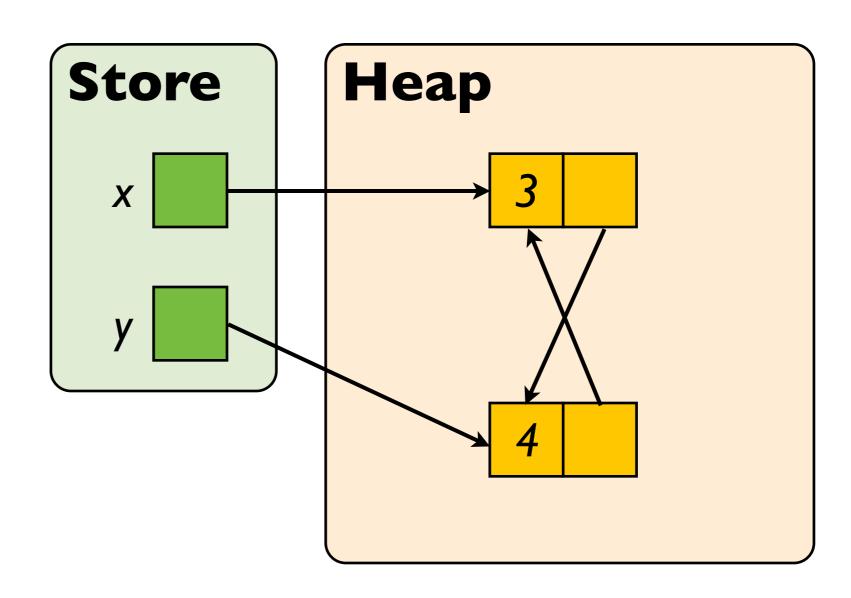
```
x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];
```



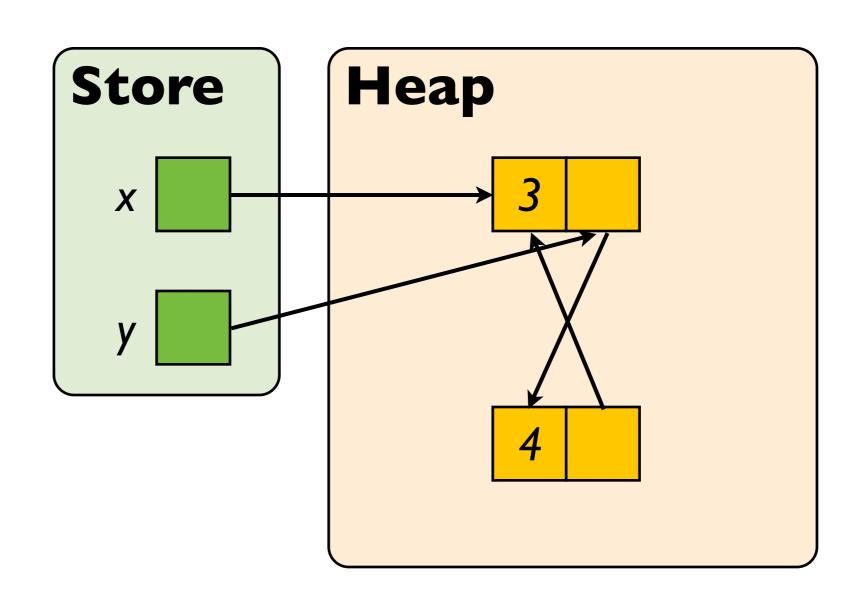
```
x := cons(3,3);
y := cons(4,4);
[x+|] := y;
[y+|] := x;
y := x+|;
dispose x;
y := [y];
```

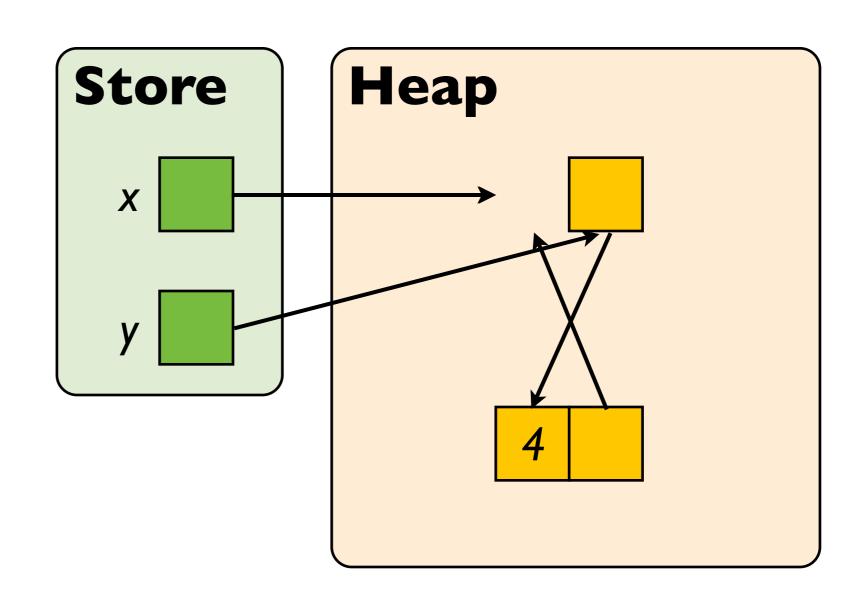


```
x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];
```

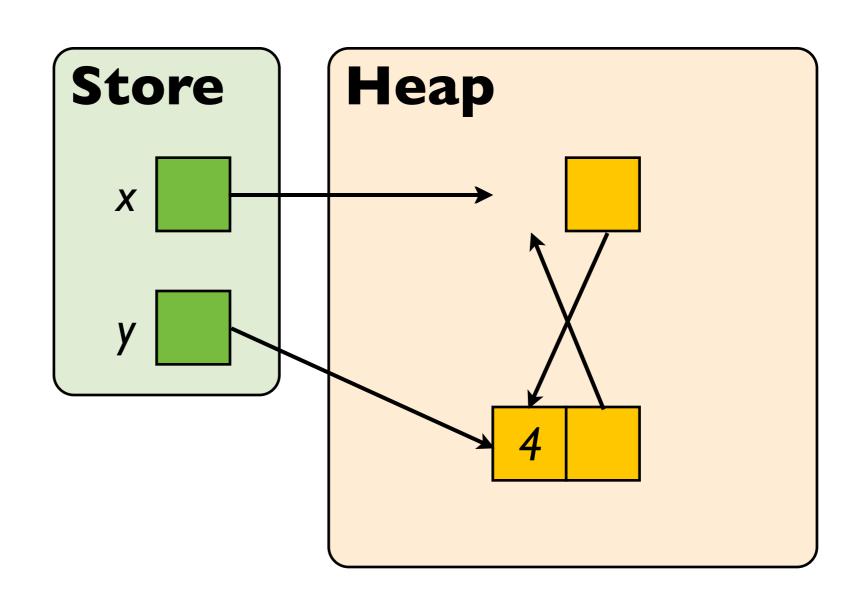


```
x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];
```





```
x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];
```



New axioms for separation logic

$$\{e \mapsto \bot\} [e] := f \{e \mapsto f\}$$

$$\{e \mapsto \bot\} \operatorname{dispose}(e) \{\operatorname{emp}\}$$

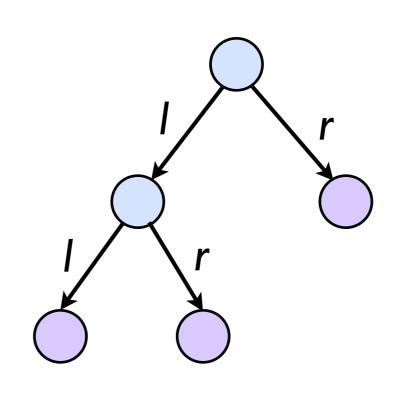
$$\{X = x \land e \mapsto Y\} \ x := [e] \ \{e[X/x] \mapsto Y \land Y = x\}$$

$$\{\text{emp}\}\ x := \cos(e_0, \dots, e_n)\ \{x \mapsto e_0, \dots, e_n\}$$

these expressions must not contain x

Recall the problem in verifying this program:

```
procedure DispTree(p)
local i, j;
if ¬isatom?(p) then
    i := p > 1;
    j := p > r;
    DispTree(i)
    DispTree(j)
    dispose(p)
```



```
{ tree(p) \land reach(p,n) \land ¬reach(p,m) \land allocated(m)

\land m.f = m' \land ¬allocated(q) }

DispTree(p)

{ ¬allocated(n) \land ¬reach(p,m) \land allocated(m)

\land m.f = m' \land ¬allocated(q) }
```

The frame rule

(the most important rule!)

$$\frac{\{p\} \quad C \quad \{q\}}{\{p*r\} \quad C \quad \{q*r\}}$$

 side condition: no variable modified by C appears free in r

• enables <u>local reasoning</u>: programs that execute correctly in a small state ($\models p$) also execute correctly in a bigger state ($\models p^*r$)

Warning: interpretation of triples!

 interpretation of triples slightly stronger in separation logic than partial correctness

$$\models \{p\} \ C \ \{q\}$$

"if C is executed on a state satisfying p, then it will not fault, and if it terminates, that state will satisfy q"

Why no faulting?

 if we don't insist that programs do not fault, then strange "proofs" like the following will be possible:

$$\{true\}\ [x] := 7 \{true\}$$

$$\{ true \} \ [x] := 7 \ \{ true \}$$
 $\{ true * x | -> 4 \} \ [x] := 7 \ \{ true * x | -> 4 \}$

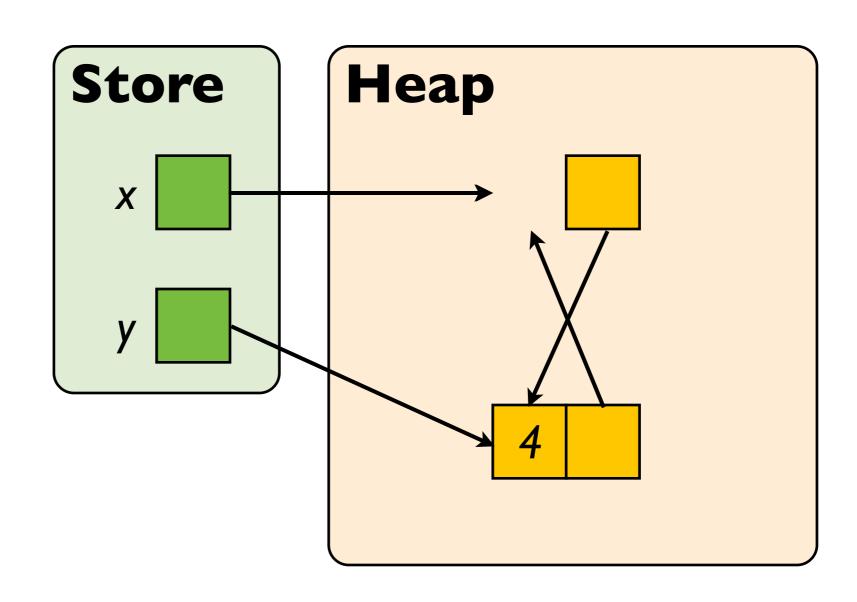
Next on the agenda

- (I) model of program states for separation logic
- (2) assertions and spatial connectives
- (3) axioms and inference rules
- (4) program proofs

Exercise (for next time): prove this!

{emp}

```
x := cons(3,3);
  y := cons(4,4);
  [x+1] := y;
   [y+1] := x;
  y := x + 1;
  dispose x;
  y := [y];
\{y | -> 4 * true\}
```



Exercise (for next time): prove this!

```
{emp}
  x := cons(3,3);
  y := cons(4,4);
   [x+1] := y;
   [y+1] := x;
  y := x+1;
  dispose x;
  y := [y];
\{y|->4 * true\}
```

- the frame rule is crucial!
- reason forwards
 e.g. use the "forward" assignment axiom
- try a proof outline (proof trees too large)

Summary

- separation logic is an extension of Hoare logic for shared mutable data structures
- program states are now modelled by variable stores and heaps
- spatial connectives allow assertions to focus on resources used by programs
- frame rule enables local reasoning

Thank you! Questions?

Next lecture:

- writing proofs in separation logic
- inductive definitions in assertions