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Proving Programs Automatically 
The Program Verification problem: 

l  Given: a program P and a specification S = [Pre, Post] 
l  Determine: if every execution of P, for any value of input 

parameters, satisfies S 
l  Equivalently: establish whether {Pre} P {Post} is (totally) correct 

l  A general and fully automated solution to the 
Program Verification problem is unachievable 
because the problem is undecidable 

l  One of the consequences of this intrinsic 
limitation is the impossibility of computing 
intermediate assertions fully automatically 

(It is not an obvious consequence: formally, 
 a reduction between undecidable problems) 



3 

Proving Programs Automatically 
The Program Verification problem: 

l  Given: a program P and a specification S = [Pre, Post] 
l  Determine: if every execution of P, for any value of input 

parameters, satisfies S 
l  Equivalently: establish whether {Pre} P {Post} is (totally) correct 

One way to put it, practically: 
 Proving the correctness of a computer program 
 requires knowledge about the program that is not 
 readily available in the program text 
                                       -- Chang & Leino 

 

In this lecture, we survey techniques to automatically 
infer assertions in interesting special cases 
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The Assertion Inference Paradox 

Correctness is consistency of implementation to specification 
 
 

The paradox: 
 
 if the specification is inferred from the implementation, 
 what do we prove? 



5 

The Assertion Inference Paradox 

The paradox: 
 if the specification is inferred from the implementation, 
 what do we prove? 

 

Possible retorts: 

-  The paradox only arises for correctness proofs; there are 
other applications (e.g. reverse-engineering legacy software) 

-  The result may be presented to a programmer for assessment 

-  Inferred specification may be inconsistent, thus denoting a 
problem 
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The Assertion Inference Paradox 

The paradox: 
 if the specification is inferred from the implementation, 
 what do we prove? 

 

The paradox does not arise if we only infer intermediate 
assertions and not specifications (pre and postconditions) 

-  Intermediate assertions are a technical means to an end 
(proving correctness) 

l  tools infer loop invariants 
-  The specification is a formal description of 

 what the implementation should do 

l  programmers write specifications 
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Invariants 

Let us consider a general (and somewhat informal) 
definition of invariant: 

Def. Invariant: assertion whose truth is preserved by 
the execution of (parts of) a program. 

x: INTEGER 
from x := 1  until ...  loop x := - x end 
 
Some invariants: 

l  -1 ≤ x ≤ 1 
l  x = -1 ∨ x = 0 ∨ x = 1 
l  x ≥ -10 
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Kinds of Invariants 

We can identify different types of 
invariants, according to what parts of 
the program preserve the invariant: 
l  Location invariant at x: assertion that 

holds whenever the computation reaches 
location x 

l  Program invariant: predicate that holds in 
any reachable state of the computation 

l  Class invariant: predicate that holds 
between (external) feature invocations 

l  Loop invariant: predicate that holds after 
every iteration of a loop body 

Def. Invariant: assertion whose truth is preserved by 
the execution of (parts of) a program. 

{P} A {I} 
{I ∧ ¬ c} B {I}      
____________  

{P}  
from A until c  loop B end  {I ∧ c} 
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Kinds of Invariants 

l  Location invariant at 2: 
  

l  Loop invariant: 
  

l  Program invariant: 
  

1:   x: INTEGER 
2:  
3:   from x := 1 
4:   until ... 
5:   loop x := - x end 
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Kinds of Invariants 

l  Location invariant at 2: 
 x = 0 

l  Loop invariant: 
 x = -1 ∨ x = 1 

l  Program invariant: 
 x ≥ -10 

1:   x: INTEGER 
2:  
3:   from x := 1 
4:   until ... 
5:   loop x := - x end 
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Focus on Loop Invariants 

If we have loop invariants we can get (basically) 
everything else at little cost 

-  while getting loop invariants requires invention 
 

In the following discussion we focus on loop invariants 
(and call them simply “invariants”) 
 
This focus is also consistent with the Assertion 
Inference Paradox 
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Focus on Loop Invariants 
The various kinds of invariants are closely related 

by the inference rules of Hoare logic 

l  If Lx is a location invariant at x then: 

@x ⇒ Lx 
  is a program invariant 

l  If P is a program invariant then it is also a 
location invariant at every location x 

l  If I is a loop invariant of: 

x: from ... until c loop ... end 
  then I ∧ c is a location invariant at x+1 

l  If L is a location invariant at x+1: 
 x:  a := b + 3 

then L [b + 3 / a] is a location invariant at x 

l  Etc... 

{P [e / x]} x := e {P} 

{P} A {I} 
{I ∧ ¬ c} B {I}      
____________  

{P}  
from A until c  loop B end  {I ∧ c} 

 



Techniques for Invariant Inference 

Classification of invariant  
inference techniques: 

•  Dynamic techniques 

•  Static techniques 
•  statistical techniques 

•  exact techniques 
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Exact Static Techniques 
for Invariant Inference 
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Static Invariant Inference: classification 

Static exact techniques for invariant inference 
are further classified in categories: 
l  Direct 

l  Assertion-based 
l  postcondition mutation 

l  Based on abstract interpretation 

l  Constraint-based 
-  usually, template-based 
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Exact Static Techniques 
for Invariant Inference: 
 
Postcondition-mutation Approach 
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The Role of User-provided Contracts 

Techniques for invariant inference rarely take 
advantage of other annotations in the program 
text, such as contracts provided by the user 

-  Not every annotation can (or should, cf. Assertion 
Inference Paradox) be inferred automatically. 

 

However, there is a close connection between a 
loop's invariant and its postcondition 
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The Role of User-provided Contracts 

However, there is a close connection between a 
loop's invariant and its postcondition 

Semantically, the invariant is a weakened form of the postcondition 

-  A larger set of program states 

Example:   from x := 0 until x = n loop x := x + 1 end 

l  Post:   x = n (with n > 0) 
l  Invariant:   0 ≤ x ≤ n 

 
 
 

 
Init: x = 0 Post: x = n 

Inv: 0 ≤ x ≤ n 

1≤x≤n n-1≤x≤n . . .  
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Invariants by Postcondition Mutation 

l  In a nutshell: 
   Static verification of candidate invariants 

    obtained by mutating postconditions 

–  Assume the availability of postconditions 

–  Mutate postconditions according to various heuristics 

-  the heuristics mirror common patterns that link postconditions 
to invariants 

-  each mutated postcondition is a candidate invariant 
–  Verify which candidates are indeed invariants 

-  With an automatic program prover such as Boogie 
–  Retain all verified invariants 

l  2009 – gin-pink 

l  2013 - DynaMate 
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Loop invariant inference 

Pre Post 

{Pre}  Program  {Post} Routine 

Candidate 
Invariants 

Loop 

Input 

Output 

mutate 

Routine 

Loop Invariants 

checking invariance 

proving correctness 
 (possibly using additional info) 



21 

Maximum value of an array 

  max (A: ARRAY [T] ; n: INTEGER): T 
     require A.length = n ≥ 1 
     local i: INTEGER 
     do 
        from i := 0 ;  Result := A[1]; 
        until i = n 
        loop 
           i := i + 1 
           if  Result ≤ A[i]  then  Result := A[i]  end 
        end 
     ensure  ( ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result )   and 

    ( ∃ 1 ≤ j ≤ n ∧ A[j] = Result ) 
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Maximum value of an array 

  max (A: ARRAY [T] ; n: INTEGER): T 
     require A.length = n ≥ 1 
     ensure  ( ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result )  and 

    ( ∃ 1 ≤ j ≤ n ∧ A[j] = Result ) 

l  Constant relaxation: replace “constant” n by “variable” i 

l  Term dropping: remove second conjunct 

 Invariant:   ∀ 1 ≤ j ≤ i ⇒ A[j] ≤ Result 
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Maximum value of an array (cont'd) 

l  Term dropping: remove first conjunct 

 Invariant:   ∃ 1 ≤ j ≤ n ∧ A[j] = Result 

  max (A: ARRAY [T] ; n: INTEGER): T 
     require A.length = n ≥ 1 
     ensure  ( ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result )  and 

    ( ∃ 1 ≤ j ≤ n ∧ A[j] = 
Result ) 
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Maximum value of an array (2nd version) 

  max_v2 (A: ARRAY [T] ; n: INTEGER): T 
     require A.length = n ≥ 1 
     local i: INTEGER 
     do 
        from i := 1 ;  Result := A[1]; 
        until i > n 
        loop 
           if  Result ≤ A[i]  then  Result := A[i]  end 
           i := i + 1 
        end 
     ensure ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result 
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Maximum value of an array (2nd version) 

l  Constant relaxation: replace “constant” n by “variable” i  
    ∀ 1 ≤ j ≤ i ⇒ A[j] ≤ Result 

l  Variable aging: 
 use expression representing the previous value of i: i – 1 

 Invariant:     ∀ 1 ≤ j ≤ i - 1 ⇒ A[j] ≤ Result 

  max_v2 (A: ARRAY [T] ; n: INTEGER): T 
     require A.length = n ≥ 1 
     ensure ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result 
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Postcondition Mutation Heuristics 
Constant relaxation 

l  replace “constant” by “variable” 

-  cannot/may be changed by any of the loop bodies 
Uncoupling 

l  replace subexpression appearing twice by two subexpressions 

-  for example: subexpression = variable id 
Term dropping 

l  remove a conjunct 

Variable aging 

l  replace subexpression by another expression representing 
its previous value 
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Invariant Inference: the Algorithm 

Goal: find invariants of loops in procedure proc 
For each: 

l  post: postcondition clause of proc 
l  loop: outer loop in proc 

compute all mutations M of post w.r.t. loop 
-  considering postcondition clauses separately implements 

term dropping 

Result: any formula in M which can be verified as 
invariant of any loop in proc 
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Array Partitioning 

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER 
   require A.length = n ≥ 1 
   local l, h: INTEGER 
   do 
     from l := 1 ; h := n  until l = h 
     loop 
        from until l = h or A[l] > pivot loop l := l + 1 end 
        from until l = h or pivot > A[h] loop h := h - 1 end 
        A.swap (l, h) 
     end 
     if pivot ≤ A[l] then l := l – 1 end ;  h := l ; Result := h 
   ensure  (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and 

  (∀ Result<k≤n ⇒ A[k] ≥ pivot) 
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Array Partitioning 

l  Uncoupling: replace first occurrence of Result by l 
   and second by h 
  (∀ 1 ≤ k ≤ l ⇒ A[k] ≤ pivot) and (∀ h < k ≤ n ⇒ A[k] ≥ pivot) 

l  Variable aging: use expression representing the previous 
   value of l: l – 1 

Invariant: 
 (∀ 1 ≤ k ≤ l - 1 ⇒ A[k] ≤ pivot) and (∀ h < k ≤ n ⇒ A[k] ≥ pivot) 

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER 
   require A.length = n ≥ 1 
   ensure  (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and 

  (∀ Result<k≤n ⇒ A[k] ≥ pivot) 
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Array Partitioning 

l  Term dropping: remove first conjunct 
     ∀ Result < k ≤ n ⇒ A[k] ≥ pivot 

l  Constant relaxation: replace “constant” Result by “variable” h 

 Invariant:    ∀ h < k ≤ n ⇒ A[k] ≥ pivot 

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER 
   require A.length = n ≥ 1 
   ensure  (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and 

  (∀ Result<k≤n ⇒ A[k] ≥ pivot) 
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Postcondition Mutation in DynaMate 
DynaMate is a tool that combines postcondition mutation with template-
based techniques for invariant inference and with automated testing. It 
finds loop invariants to verify Java/JML programs. 

Experiments on 28 methods of java.util: 

# proved 
methods 

% proved 
proof 
obligations 

# 
invariants 
post 
mutations 

# other 
invariants 

time 

25 97 % 10 15 45 min. 
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Limitations of the approach 

Some invariants are not mutations of the postcondition 

l  “completeness” of the postcondition 

l  integration with other techniques 

l  more heuristics 

Combinatorial explosion 

l  predefined mutations, time out 

Dependencies 

l  especially with nested loops 

l  dynamic checking 

Limitations of automated reasoning techniques 
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Exact Static Techniques 
for Invariant Inference: 
 
Constraint-based Approach 
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Constraint-based Invariant Inference 

l  In a nutshell: 
   encode semantics of iteration as constraints 
   on a template invariant 

•  Choose a template invariant expression 

l  template defines a (infinte) set of assertions 
•   Encode the loop semantics as a set of constraints on the template 

l  initiation + consecution 
•   Solve the constraints 

l  this is usually the complex part 
•   Any solution is an invariant 

l  E.g.:  2003 -- Henny Sipma et al.    2004 -- Zohar Manna et al. 
    2007 -- Tom Henzinger et al. 
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Constraint-based Inv. Inference: Example 

l  Template invariant expression: 

           T  =  c•x + d•n + e ≤ 0 

l  Constraints encoding loop semantics: 
l  Initiation: “T holds for the initial values of x and n” 

 T [0/x; n0/n]    ≡    c•0 + d•n0 + e ≤ 0 ≡ d•n0 + e ≤ 0 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Constraint-based Inv. Inference: Example 

l  Constraints encoding loop semantics: 

Consecution:  “if T holds and one iteration of the loop is executed, 
         T still holds” 
T [x/x; n/n] ∧ ( ¬(x ≥ n) ∧ x' = x + 1 ∧ n' = n ) ⇒ T [x'/x; n'/n] 
 

l  Solving the constraints requires to eliminate occurrences 
of x, x', n, n' 

l  For linear constraints we can use Farkas's Lemma 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Farkas's Lemma (1902) 
Let S be a system of linear inequalities over n real 

variables: 

and let Ψ be a linear inequality: 

Then S ⇒ Ψ is valid iff S is unsatisfiable or there 
exist m +1 real nonnegative coefficients λ0, λ1, ..., λm 
such that: 
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Constraint-based Inv. Inference: Example 
Use Farkas's lemma to turn the consecution 

constraint: 
T [x/x; n/n] ∧ x < n ∧ x' = x + 1 ∧ n' = n 

                       ⇒ T [x'/x; n'/n] 
into a constraint over c, d, and e only. 
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Constraint-based Inv. Inference: Example 
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Constraint-based Inv. Inference: Example 

Finally, eliminate existential quantifiers from Φ 
to get the constraint: 

   c ≤ 0  ∨  ( c + d = 0 ∧ e ≤ 0 ) 
 (Quantifier elimination is also quite technical,  

      but there are tools that do that for us) 
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Constraint-based Inv. Inference: Example 

l  Any solution [c, d, e] to: 
l  Initiation and Consecution: 

  ( d•n0 + e ≤ 0 ) ∧ ( c ≤ 0  ∨  ( c + d = 0 ∧ e ≤ 0 ) ) 

determines an invariant of the loop. 
For example, substituting the following values in the 
template leads to invariants: 

-  [0, -1, 0]     --->  n ≥ 0 
-  [1, 0, 0]     --->  x ≥ 0 
-  [1, -1, 0]      --->  x – n ≤ 0 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Constraint-based Inv. Inference: Summary 
l  Main issues: 

-  choice of invariant templates for which effective decision procedures exist 
l  interesting research topic per se, on the brink of undecidability 

-  heuristics to extract the “best” invariants from the set of solutions 
l  Advantages: 

-  sound & complete (w.r.t. the template) 
-  exploit heterogeneous decision procedures together 
-  fully automated (possibly except for providing the template) 

l  providing the template introduces a “natural” form of user interaction 
l  Disadvantages: 

-  suitable mathematical decision theories are usually quite sophisticated 
l  hence, hard to extend and customize 

-  exact constraint solving is usually quite expensive 
-  mostly suitable for algebraic/numeric/scalar invariants 

l  requires integration with other techniques to achieve full functional 
correctness proofs 
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Dynamic Techniques 
for Invariant Inference 
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Dynamic Invariant Inference 

l  In a nutshell: 
   testing of candidate invariants 
–  Choose a set of test cases 

–  Perform runtime monitoring of candidate invariants 

–  If some test run violates a candidate, discard the 
candidate 

–  The surviving candidates are guessed invariant 

l  Daikon tool, 1999 -- Mike Ernst et al. 

l  CITADEL: Daikon for Eiffel, 2008  -- Nadia Polikarpova 

l  AutoInfer for Eiffel (Yi “Jason” Wei et al.) 
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Dynamic Invariant Inference: Example 

l  Test cases:  { n = k  |  0 ≤ k ≤ 1000 } 
l  Candidate invariants: 

-  { x ≥ c  |  -1000 ≤ c ≤ 1000 }, 
{ n ≥ c  |  -1000 ≤ c ≤ 1000 } 

-  { x = c·n + d  |  -500 ≤ c, d ≤ 500 } 
-  { x < n, x ≤ n, x = n, x ≠ n, x ≥ n, x > n } 
-  { x ± n ≥ c  |  -500 ≤ c ≤ 500 } 
-  ... 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Dynamic Invariant Inference: Example 

l  Survivors (after loop iterations) : 
-  { x ≥ -c  |  0 ≤ c ≤ 1000 }, 

{ n ≥ -c  |  0 ≤ c ≤ 1000 } 
-  x ≤ n 
-  { x + n ≥ c  |  -500 ≤ c ≤ 500 } 
-  ... 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Dynamic Invariant Inference: Summary 
l  Main issues: 

-  choose suitable test cases 
-  handle huge sets of candidate invariants (runtime overhead) 
-  estimate soundness/quality of survivor predicates 
-  select heuristically the “best” survivor predicates 

l  Advantages: 

-  straightforward to implement (at least compared to other techniques) 
-  guessing is often rather accurate in practice (possibly with some 

heuristics) 
-  customizable and rather flexible: 

in principle, whatever you can test you can check for invariance 
l  Disadvantages: 

-  unsound (educated guessing) 
-  without heuristics, large amount of useless, redundant predicates 
-  sensitive to choice of test cases 
-  some complex candidate invariants are difficult to implement efficiently 
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Exact Static Techniques 
for Invariant Inference: 
 
Direct Approach 
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Direct Static Invariant Inference 

l  In a nutshell: 
   solve the fixpoint equations underlying the program 

•  v(i): value of variable v at step i of the computation 
•  Encode the semantics of loops explicitly and directly as 

recurrence equations over v(i) 
•  Solve recurrence equations 
•  Eliminate step parameter i to obtain invariant 

l  1973 -- Shmuel Katz & Zohar Manna 

l  2005 -- Laura Kovacs et al. 
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Direct Static Invariant Inference: Example 

l  x(i), n(i) 

l  Recurrence relations: 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Direct Static Invariant Inference: Example 

l  Solving recurrence relations: 
l  x(i) = min(n0, i) ≥ 0 
l  n(i) = n0 

l  Eliminating step parameter i: 
-  x(i) – n(i) = min(n0, i) – n0  ≤ 0, or: 
-  x – n  ≤ 0, hence: 
-  0  ≤ x  ≤ n 
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Direct Static Invariant Inference: Summary 

l  Main issues: 
-  in its bare form, more a set of guidelines than a technique 
-  step parameter elimination is tricky 

l  Advantages: 
-  since semantics is represented explicitly, obtained 

invariants are often powerful 
-  benefits from the programmer's ingenuity 
-  additional information about the program can be plugged in 

l  Disadvantages: 
-  solving recurrence equations can be very difficult (when 

possible at all) 
-  typically restricted to algebraic/numeric/scalar invariants 
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APPENDIX – Additional Material 
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Exact Static Techniques 
for Invariant Inference: 
 
Approach Based on 
Abstract Interpretation  
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Abstract Interpretation for Invariants 

l  In a nutshell: 
    symbolic execution over an abstract domain 
   with guarantee of termination 

•  Consider the over-approximation of the value of variables over some coarse 
abstract domain (instead of their exact values) 

•  Symbolically execute the program over the abstract domain 
•   Iterate loops until termination 

l  termination guaranteed by the nature of the abstract domain 
or by heuristic cut-offs (widening) 

•   The final expression is an invariant 

l  1976 -- Michael Karr 

l  1977, 1978 -- Patrick & Radhia Cousot, Nicolas Halbwachs 

l  ... 
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Abstract Interpretation for Inv.: Example 

l  Abstract interval domain: 
conjunction of inequalities in the form 
                v ≤ c or c ≤ v 
for any program variable v and integer constant c 

l  Initially:       S(0) ≜ { 0 ≤ x, x ≤ 0, 0 ≤ n } 
l  After one loop iteration: S(1) ≜ { 1 ≤ x, x ≤ 1, 0 ≤ n } 
l  Set of abstract states reached in at most one loop iteration: 

            S(0) ∨ S(1) = { 0 ≤ x, x ≤ 1, 0 ≤ n } 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Abstract Interpretation for Inv.: Example 

l  Initially:       S(0) ≜ { 0 ≤ x, x ≤ 0, 0 ≤ n } 

l  Set of abstract states reached in at most one loop iteration: 
            S(0) ∨ S(1) = { 0 ≤ x, x ≤ 1, 0 ≤ n } 

l  S(0) ∨ S(1) does not subsume S(0) 
l  no fixpoint, keep on iterating 

l  Abstract states after at most k loop iterations: 

            S(0) ∨ ... ∨ S(k) = { 0 ≤ x, x ≤ k, 0 ≤ n } 

l  No convergence as: S(0) ∨ ... ∨ S(k) does not subsume S(0) ∨ ... ∨ S(k-1) 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Abstract Interpretation for Inv.: Example 

l  Abstract states after at most k loop iterations: 

                 S(0) ∨ ... ∨ S(k) = { 0 ≤ x, x ≤ k, 0 ≤ n } 

l  Apply heuristic over-approximation: 

l  relax S(0) ∨ ... ∨ S(k) by dropping inequalities with growing bounds: 
  S' = widen { 0 ≤ x, x ≤ k, 0 ≤ n } = { 0 ≤ x, 0 ≤ n } 

l  S' is a fixpoint of the loop iteration 

l  0 ≤ x ∧ 0 ≤ n is a loop invariant 

l  a very weak one, but more sophisticated choices of abstract domain and/
or heuristic over-approximation would yield the “desired” 0 ≤ x ≤ n 

 dummy_routine (n: NATURAL) 
 local x: NATURAL do 

   from x := 0 
  until x ≥ n 
  loop x := x + 1 end 
 end 
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Abstract Interpretation for Inv.: Summary 

l  Main issues: 

-  effective choice of abstract domain 
l  trade off: accuracy vs. computational efficiency 

-  smart choice of heuristic widening 
l  Advantages: 

-  the abstract interpretation framework is quite general and 
customizable to many different program properties 

-  fully automated 
-  sound 
-  scalable: efficient implementations are possible 

l  Disadvantages: 

-  incompleteness, from two sources: 
l  invariants can be inexpressible in the abstract domain 
l  even if they are expressible, heuristic widening loses 

completeness 
-  requires integration with other techniques to achieve full functional 

correctness proofs 



60 

Statistical Static Techniques 
for Invariant Inference 
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Statistical Static Invariant Inference 

The goal of the analysis is usually different than 
for other classes of invariant inference 
techniques: 

-  inferring likely specific behavioral specification 
(e.g., temporal properties) 

-  inferring likely violations of invariance behavioral 
properties 

-  no functional invariants 

    ... 
x: create a_node 
    ... 
y: dispose a_node 

Examples of inferred behavioral specs: 
l  Location x performs allocation (A) of some resource 
l  Location y performs deallocation (D) of some 

resource 
l  Every allocated resource is eventually deallocated 
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Statistical Static Invariant Inference 

l  In a nutshell: 
          learning of a statistical model 
–  Classify all possible behaviors (w.r.t. goal properties) of code 
–  Assign prior probabilities to different behaviors 

l  possibly including additional knowledge 
–  Compute cumulative probabilities of code 

l  e.g., through simple symbolic execution 
–  Report likely inferred specifications or likely invariance violations 

l  those with the highest cumulative probabilities 

l  2001, 2006 -- Dawson Engler et al. 

l  2002 -- James Larus et al. 

l  ... 
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Statistical Invariant Inference: Example 

l  Prior probabilities: 
l  Pr [green] = 0.9      (probability that the sequence is ok) 
l  Pr [red] = 0.1         (probability that the 

sequence gives a bug) 

l  Cumulative probabilities, e.g.: 

l  Pr [A, ¬D, D] = Πf f (A, ¬D, D) = 0.9 x ... x ... 
-  f are the various elements of knowledge 
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Statistical Invariant Inference: Summary 
l  Main issues: 

-  choose suitable behavioral properties 
-  compute efficiently complex products of probabilities for a huge 

number of candidate behaviors 
-  classify possible behaviors by their probabilities 
-  introduce effective ad hoc factors 

l  Advantages: 
-  reasonably robust w.r.t. the choice of prior probabilities 
-  customizable: can incorporate very specific probability factors 
-  can handle large “real” programs 

l  Disadvantages: 
-  unsound 
-  mostly limited to simple behavioral properties 
-  best suited for “systems” code 

(where full functional correctness is usually not a concern) 
 


