
Chair of Software Engineering

Software Verification

Assertion Inference

Carlo A. Furia

2

Proving Programs Automatically
The Program Verification problem:

l  Given: a program P and a specification S = [Pre, Post]
l  Determine: if every execution of P, for any value of input

parameters, satisfies S
l  Equivalently: establish whether {Pre} P {Post} is (totally) correct

l  A general and fully automated solution to the
Program Verification problem is unachievable
because the problem is undecidable

l  One of the consequences of this intrinsic
limitation is the impossibility of computing
intermediate assertions fully automatically

(It is not an obvious consequence: formally,
 a reduction between undecidable problems)

3

Proving Programs Automatically
The Program Verification problem:

l  Given: a program P and a specification S = [Pre, Post]
l  Determine: if every execution of P, for any value of input

parameters, satisfies S
l  Equivalently: establish whether {Pre} P {Post} is (totally) correct

One way to put it, practically:
 Proving the correctness of a computer program
 requires knowledge about the program that is not
 readily available in the program text
 -- Chang & Leino

In this lecture, we survey techniques to automatically
infer assertions in interesting special cases

4

The Assertion Inference Paradox

Correctness is consistency of implementation to specification

The paradox:

 if the specification is inferred from the implementation,
 what do we prove?

5

The Assertion Inference Paradox

The paradox:
 if the specification is inferred from the implementation,
 what do we prove?

Possible retorts:

-  The paradox only arises for correctness proofs; there are
other applications (e.g. reverse-engineering legacy software)

-  The result may be presented to a programmer for assessment

-  Inferred specification may be inconsistent, thus denoting a
problem

6

The Assertion Inference Paradox

The paradox:
 if the specification is inferred from the implementation,
 what do we prove?

The paradox does not arise if we only infer intermediate
assertions and not specifications (pre and postconditions)

-  Intermediate assertions are a technical means to an end
(proving correctness)

l  tools infer loop invariants
-  The specification is a formal description of

 what the implementation should do

l  programmers write specifications

7

Invariants

Let us consider a general (and somewhat informal)
definition of invariant:

Def. Invariant: assertion whose truth is preserved by
the execution of (parts of) a program.

x: INTEGER
from x := 1 until ... loop x := - x end

Some invariants:

l  -1 ≤ x ≤ 1
l  x = -1 ∨ x = 0 ∨ x = 1
l  x ≥ -10

8

Kinds of Invariants

We can identify different types of
invariants, according to what parts of
the program preserve the invariant:
l  Location invariant at x: assertion that

holds whenever the computation reaches
location x

l  Program invariant: predicate that holds in
any reachable state of the computation

l  Class invariant: predicate that holds
between (external) feature invocations

l  Loop invariant: predicate that holds after
every iteration of a loop body

Def. Invariant: assertion whose truth is preserved by
the execution of (parts of) a program.

{P} A {I}
{I ∧ ¬ c} B {I}

{P}
from A until c loop B end {I ∧ c}

9

Kinds of Invariants

l  Location invariant at 2:

l  Loop invariant:

l  Program invariant:

1: x: INTEGER
2:
3: from x := 1
4: until ...
5: loop x := - x end

10

Kinds of Invariants

l  Location invariant at 2:
 x = 0

l  Loop invariant:
 x = -1 ∨ x = 1

l  Program invariant:
 x ≥ -10

1: x: INTEGER
2:
3: from x := 1
4: until ...
5: loop x := - x end

11

Focus on Loop Invariants

If we have loop invariants we can get (basically)
everything else at little cost

-  while getting loop invariants requires invention

In the following discussion we focus on loop invariants
(and call them simply “invariants”)

This focus is also consistent with the Assertion
Inference Paradox

12

Focus on Loop Invariants
The various kinds of invariants are closely related

by the inference rules of Hoare logic

l  If Lx is a location invariant at x then:

@x ⇒ Lx
 is a program invariant

l  If P is a program invariant then it is also a
location invariant at every location x

l  If I is a loop invariant of:

x: from ... until c loop ... end
 then I ∧ c is a location invariant at x+1

l  If L is a location invariant at x+1:
 x: a := b + 3

then L [b + 3 / a] is a location invariant at x

l  Etc...

{P [e / x]} x := e {P}

{P} A {I}
{I ∧ ¬ c} B {I}

{P}
from A until c loop B end {I ∧ c}

Techniques for Invariant Inference

Classification of invariant
inference techniques:

•  Dynamic techniques

•  Static techniques
•  statistical techniques

•  exact techniques

(Roughly) direction of increasing:
soun
dness

comp
le
teness

ma
t
hema
t
ica
l

 sop
h
is
t
ica
t
ion

14

Exact Static Techniques
for Invariant Inference

15

Static Invariant Inference: classification

Static exact techniques for invariant inference
are further classified in categories:
l  Direct

l  Assertion-based
l  postcondition mutation

l  Based on abstract interpretation

l  Constraint-based
-  usually, template-based

16

Exact Static Techniques
for Invariant Inference:

Postcondition-mutation Approach

17

The Role of User-provided Contracts

Techniques for invariant inference rarely take
advantage of other annotations in the program
text, such as contracts provided by the user

-  Not every annotation can (or should, cf. Assertion
Inference Paradox) be inferred automatically.

However, there is a close connection between a
loop's invariant and its postcondition

18

The Role of User-provided Contracts

However, there is a close connection between a
loop's invariant and its postcondition

Semantically, the invariant is a weakened form of the postcondition

-  A larger set of program states

Example: from x := 0 until x = n loop x := x + 1 end

l  Post: x = n (with n > 0)
l  Invariant: 0 ≤ x ≤ n

Init: x = 0 Post: x = n

Inv: 0 ≤ x ≤ n

1≤x≤n n-1≤x≤n . . .

19

Invariants by Postcondition Mutation

l  In a nutshell:
 Static verification of candidate invariants

 obtained by mutating postconditions

–  Assume the availability of postconditions

–  Mutate postconditions according to various heuristics

-  the heuristics mirror common patterns that link postconditions
to invariants

-  each mutated postcondition is a candidate invariant
–  Verify which candidates are indeed invariants

-  With an automatic program prover such as Boogie
–  Retain all verified invariants

l  2009 – gin-pink

l  2013 - DynaMate

20

Loop invariant inference

Pre Post

{Pre} Program {Post} Routine

Candidate
Invariants

Loop

Input

Output

mutate

Routine

Loop Invariants

checking invariance

proving correctness
 (possibly using additional info)

21

Maximum value of an array

 max (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 local i: INTEGER
 do
 from i := 0 ; Result := A[1];
 until i = n
 loop
 i := i + 1
 if Result ≤ A[i] then Result := A[i] end
 end
 ensure (∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result) and

 (∃ 1 ≤ j ≤ n ∧ A[j] = Result)

22

Maximum value of an array

 max (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 ensure (∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result) and

 (∃ 1 ≤ j ≤ n ∧ A[j] = Result)

l  Constant relaxation: replace “constant” n by “variable” i

l  Term dropping: remove second conjunct

 Invariant: ∀ 1 ≤ j ≤ i ⇒ A[j] ≤ Result

23

Maximum value of an array (cont'd)

l  Term dropping: remove first conjunct

 Invariant: ∃ 1 ≤ j ≤ n ∧ A[j] = Result

 max (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 ensure (∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result) and

 (∃ 1 ≤ j ≤ n ∧ A[j] =
Result)

24

Maximum value of an array (2nd version)

 max_v2 (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 local i: INTEGER
 do
 from i := 1 ; Result := A[1];
 until i > n
 loop
 if Result ≤ A[i] then Result := A[i] end
 i := i + 1
 end
 ensure ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result

25

Maximum value of an array (2nd version)

l  Constant relaxation: replace “constant” n by “variable” i
 ∀ 1 ≤ j ≤ i ⇒ A[j] ≤ Result

l  Variable aging:
 use expression representing the previous value of i: i – 1

 Invariant: ∀ 1 ≤ j ≤ i - 1 ⇒ A[j] ≤ Result

 max_v2 (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 ensure ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result

26

Postcondition Mutation Heuristics
Constant relaxation

l  replace “constant” by “variable”

-  cannot/may be changed by any of the loop bodies
Uncoupling

l  replace subexpression appearing twice by two subexpressions

-  for example: subexpression = variable id
Term dropping

l  remove a conjunct

Variable aging

l  replace subexpression by another expression representing
its previous value

27

Invariant Inference: the Algorithm

Goal: find invariants of loops in procedure proc
For each:

l  post: postcondition clause of proc
l  loop: outer loop in proc

compute all mutations M of post w.r.t. loop
-  considering postcondition clauses separately implements

term dropping

Result: any formula in M which can be verified as
invariant of any loop in proc

28

Array Partitioning

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
 require A.length = n ≥ 1
 local l, h: INTEGER
 do
 from l := 1 ; h := n until l = h
 loop
 from until l = h or A[l] > pivot loop l := l + 1 end
 from until l = h or pivot > A[h] loop h := h - 1 end
 A.swap (l, h)
 end
 if pivot ≤ A[l] then l := l – 1 end ; h := l ; Result := h
 ensure (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and

 (∀ Result<k≤n ⇒ A[k] ≥ pivot)

29

Array Partitioning

l  Uncoupling: replace first occurrence of Result by l
 and second by h
 (∀ 1 ≤ k ≤ l ⇒ A[k] ≤ pivot) and (∀ h < k ≤ n ⇒ A[k] ≥ pivot)

l  Variable aging: use expression representing the previous
 value of l: l – 1

Invariant:
 (∀ 1 ≤ k ≤ l - 1 ⇒ A[k] ≤ pivot) and (∀ h < k ≤ n ⇒ A[k] ≥ pivot)

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
 require A.length = n ≥ 1
 ensure (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and

 (∀ Result<k≤n ⇒ A[k] ≥ pivot)

30

Array Partitioning

l  Term dropping: remove first conjunct
 ∀ Result < k ≤ n ⇒ A[k] ≥ pivot

l  Constant relaxation: replace “constant” Result by “variable” h

 Invariant: ∀ h < k ≤ n ⇒ A[k] ≥ pivot

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
 require A.length = n ≥ 1
 ensure (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and

 (∀ Result<k≤n ⇒ A[k] ≥ pivot)

31

Postcondition Mutation in DynaMate
DynaMate is a tool that combines postcondition mutation with template-
based techniques for invariant inference and with automated testing. It
finds loop invariants to verify Java/JML programs.

Experiments on 28 methods of java.util:

proved
methods

% proved
proof
obligations

invariants
post
mutations

other
invariants

time

25 97 % 10 15 45 min.

32

Limitations of the approach

Some invariants are not mutations of the postcondition

l  “completeness” of the postcondition

l  integration with other techniques

l  more heuristics

Combinatorial explosion

l  predefined mutations, time out

Dependencies

l  especially with nested loops

l  dynamic checking

Limitations of automated reasoning techniques

33

Exact Static Techniques
for Invariant Inference:

Constraint-based Approach

34

Constraint-based Invariant Inference

l  In a nutshell:
 encode semantics of iteration as constraints
 on a template invariant

•  Choose a template invariant expression

l  template defines a (infinte) set of assertions
•  Encode the loop semantics as a set of constraints on the template

l  initiation + consecution
•  Solve the constraints

l  this is usually the complex part
•  Any solution is an invariant

l  E.g.: 2003 -- Henny Sipma et al. 2004 -- Zohar Manna et al.
 2007 -- Tom Henzinger et al.

35

Constraint-based Inv. Inference: Example

l  Template invariant expression:

 T = c•x + d•n + e ≤ 0

l  Constraints encoding loop semantics:
l  Initiation: “T holds for the initial values of x and n”

 T [0/x; n0/n] ≡ c•0 + d•n0 + e ≤ 0 ≡ d•n0 + e ≤ 0

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

36

Constraint-based Inv. Inference: Example

l  Constraints encoding loop semantics:

Consecution: “if T holds and one iteration of the loop is executed,
 T still holds”
T [x/x; n/n] ∧ (¬(x ≥ n) ∧ x' = x + 1 ∧ n' = n) ⇒ T [x'/x; n'/n]

l  Solving the constraints requires to eliminate occurrences
of x, x', n, n'

l  For linear constraints we can use Farkas's Lemma

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

37

Farkas's Lemma (1902)
Let S be a system of linear inequalities over n real

variables:

and let Ψ be a linear inequality:

Then S ⇒ Ψ is valid iff S is unsatisfiable or there
exist m +1 real nonnegative coefficients λ0, λ1, ..., λm
such that:

38

Constraint-based Inv. Inference: Example
Use Farkas's lemma to turn the consecution

constraint:
T [x/x; n/n] ∧ x < n ∧ x' = x + 1 ∧ n' = n

 ⇒ T [x'/x; n'/n]
into a constraint over c, d, and e only.

39

Constraint-based Inv. Inference: Example

40

Constraint-based Inv. Inference: Example

Finally, eliminate existential quantifiers from Φ
to get the constraint:

 c ≤ 0 ∨ (c + d = 0 ∧ e ≤ 0)
 (Quantifier elimination is also quite technical,

 but there are tools that do that for us)

41

Constraint-based Inv. Inference: Example

l  Any solution [c, d, e] to:
l  Initiation and Consecution:

 (d•n0 + e ≤ 0) ∧ (c ≤ 0 ∨ (c + d = 0 ∧ e ≤ 0))

determines an invariant of the loop.
For example, substituting the following values in the
template leads to invariants:

-  [0, -1, 0] ---> n ≥ 0
-  [1, 0, 0] ---> x ≥ 0
-  [1, -1, 0] ---> x – n ≤ 0

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

42

Constraint-based Inv. Inference: Summary
l  Main issues:

-  choice of invariant templates for which effective decision procedures exist
l  interesting research topic per se, on the brink of undecidability

-  heuristics to extract the “best” invariants from the set of solutions
l  Advantages:

-  sound & complete (w.r.t. the template)
-  exploit heterogeneous decision procedures together
-  fully automated (possibly except for providing the template)

l  providing the template introduces a “natural” form of user interaction
l  Disadvantages:

-  suitable mathematical decision theories are usually quite sophisticated
l  hence, hard to extend and customize

-  exact constraint solving is usually quite expensive
-  mostly suitable for algebraic/numeric/scalar invariants

l  requires integration with other techniques to achieve full functional
correctness proofs

43

Dynamic Techniques
for Invariant Inference

44

Dynamic Invariant Inference

l  In a nutshell:
 testing of candidate invariants
–  Choose a set of test cases

–  Perform runtime monitoring of candidate invariants

–  If some test run violates a candidate, discard the
candidate

–  The surviving candidates are guessed invariant

l  Daikon tool, 1999 -- Mike Ernst et al.

l  CITADEL: Daikon for Eiffel, 2008 -- Nadia Polikarpova

l  AutoInfer for Eiffel (Yi “Jason” Wei et al.)

45

Dynamic Invariant Inference: Example

l  Test cases: { n = k | 0 ≤ k ≤ 1000 }
l  Candidate invariants:

-  { x ≥ c | -1000 ≤ c ≤ 1000 },
{ n ≥ c | -1000 ≤ c ≤ 1000 }

-  { x = c·n + d | -500 ≤ c, d ≤ 500 }
-  { x < n, x ≤ n, x = n, x ≠ n, x ≥ n, x > n }
-  { x ± n ≥ c | -500 ≤ c ≤ 500 }
-  ...

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

46

Dynamic Invariant Inference: Example

l  Survivors (after loop iterations) :
-  { x ≥ -c | 0 ≤ c ≤ 1000 },

{ n ≥ -c | 0 ≤ c ≤ 1000 }
-  x ≤ n
-  { x + n ≥ c | -500 ≤ c ≤ 500 }
-  ...

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

47

Dynamic Invariant Inference: Summary
l  Main issues:

-  choose suitable test cases
-  handle huge sets of candidate invariants (runtime overhead)
-  estimate soundness/quality of survivor predicates
-  select heuristically the “best” survivor predicates

l  Advantages:

-  straightforward to implement (at least compared to other techniques)
-  guessing is often rather accurate in practice (possibly with some

heuristics)
-  customizable and rather flexible:

in principle, whatever you can test you can check for invariance
l  Disadvantages:

-  unsound (educated guessing)
-  without heuristics, large amount of useless, redundant predicates
-  sensitive to choice of test cases
-  some complex candidate invariants are difficult to implement efficiently

48

Exact Static Techniques
for Invariant Inference:

Direct Approach

49

Direct Static Invariant Inference

l  In a nutshell:
 solve the fixpoint equations underlying the program

•  v(i): value of variable v at step i of the computation
•  Encode the semantics of loops explicitly and directly as

recurrence equations over v(i)
•  Solve recurrence equations
•  Eliminate step parameter i to obtain invariant

l  1973 -- Shmuel Katz & Zohar Manna

l  2005 -- Laura Kovacs et al.

50

Direct Static Invariant Inference: Example

l  x(i), n(i)

l  Recurrence relations:

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

51

Direct Static Invariant Inference: Example

l  Solving recurrence relations:
l  x(i) = min(n0, i) ≥ 0
l  n(i) = n0

l  Eliminating step parameter i:
-  x(i) – n(i) = min(n0, i) – n0 ≤ 0, or:
-  x – n ≤ 0, hence:
-  0 ≤ x ≤ n

52

Direct Static Invariant Inference: Summary

l  Main issues:
-  in its bare form, more a set of guidelines than a technique
-  step parameter elimination is tricky

l  Advantages:
-  since semantics is represented explicitly, obtained

invariants are often powerful
-  benefits from the programmer's ingenuity
-  additional information about the program can be plugged in

l  Disadvantages:
-  solving recurrence equations can be very difficult (when

possible at all)
-  typically restricted to algebraic/numeric/scalar invariants

53

APPENDIX – Additional Material

54

Exact Static Techniques
for Invariant Inference:

Approach Based on
Abstract Interpretation

55

Abstract Interpretation for Invariants

l  In a nutshell:
 symbolic execution over an abstract domain
 with guarantee of termination

•  Consider the over-approximation of the value of variables over some coarse
abstract domain (instead of their exact values)

•  Symbolically execute the program over the abstract domain
•  Iterate loops until termination

l  termination guaranteed by the nature of the abstract domain
or by heuristic cut-offs (widening)

•  The final expression is an invariant

l  1976 -- Michael Karr

l  1977, 1978 -- Patrick & Radhia Cousot, Nicolas Halbwachs

l  ...

56

Abstract Interpretation for Inv.: Example

l  Abstract interval domain:
conjunction of inequalities in the form
 v ≤ c or c ≤ v
for any program variable v and integer constant c

l  Initially: S(0) ≜ { 0 ≤ x, x ≤ 0, 0 ≤ n }
l  After one loop iteration: S(1) ≜ { 1 ≤ x, x ≤ 1, 0 ≤ n }
l  Set of abstract states reached in at most one loop iteration:

 S(0) ∨ S(1) = { 0 ≤ x, x ≤ 1, 0 ≤ n }

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

57

Abstract Interpretation for Inv.: Example

l  Initially: S(0) ≜ { 0 ≤ x, x ≤ 0, 0 ≤ n }

l  Set of abstract states reached in at most one loop iteration:
 S(0) ∨ S(1) = { 0 ≤ x, x ≤ 1, 0 ≤ n }

l  S(0) ∨ S(1) does not subsume S(0)
l  no fixpoint, keep on iterating

l  Abstract states after at most k loop iterations:

 S(0) ∨ ... ∨ S(k) = { 0 ≤ x, x ≤ k, 0 ≤ n }

l  No convergence as: S(0) ∨ ... ∨ S(k) does not subsume S(0) ∨ ... ∨ S(k-1)

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

58

Abstract Interpretation for Inv.: Example

l  Abstract states after at most k loop iterations:

 S(0) ∨ ... ∨ S(k) = { 0 ≤ x, x ≤ k, 0 ≤ n }

l  Apply heuristic over-approximation:

l  relax S(0) ∨ ... ∨ S(k) by dropping inequalities with growing bounds:
 S' = widen { 0 ≤ x, x ≤ k, 0 ≤ n } = { 0 ≤ x, 0 ≤ n }

l  S' is a fixpoint of the loop iteration

l  0 ≤ x ∧ 0 ≤ n is a loop invariant

l  a very weak one, but more sophisticated choices of abstract domain and/
or heuristic over-approximation would yield the “desired” 0 ≤ x ≤ n

 dummy_routine (n: NATURAL)
 local x: NATURAL do

 from x := 0
 until x ≥ n
 loop x := x + 1 end
 end

59

Abstract Interpretation for Inv.: Summary

l  Main issues:

-  effective choice of abstract domain
l  trade off: accuracy vs. computational efficiency

-  smart choice of heuristic widening
l  Advantages:

-  the abstract interpretation framework is quite general and
customizable to many different program properties

-  fully automated
-  sound
-  scalable: efficient implementations are possible

l  Disadvantages:

-  incompleteness, from two sources:
l  invariants can be inexpressible in the abstract domain
l  even if they are expressible, heuristic widening loses

completeness
-  requires integration with other techniques to achieve full functional

correctness proofs

60

Statistical Static Techniques
for Invariant Inference

61

Statistical Static Invariant Inference

The goal of the analysis is usually different than
for other classes of invariant inference
techniques:

-  inferring likely specific behavioral specification
(e.g., temporal properties)

-  inferring likely violations of invariance behavioral
properties

-  no functional invariants

 ...
x: create a_node
 ...
y: dispose a_node

Examples of inferred behavioral specs:
l  Location x performs allocation (A) of some resource
l  Location y performs deallocation (D) of some

resource
l  Every allocated resource is eventually deallocated

62

Statistical Static Invariant Inference

l  In a nutshell:
 learning of a statistical model
–  Classify all possible behaviors (w.r.t. goal properties) of code
–  Assign prior probabilities to different behaviors

l  possibly including additional knowledge
–  Compute cumulative probabilities of code

l  e.g., through simple symbolic execution
–  Report likely inferred specifications or likely invariance violations

l  those with the highest cumulative probabilities

l  2001, 2006 -- Dawson Engler et al.

l  2002 -- James Larus et al.

l  ...

63

Statistical Invariant Inference: Example

l  Prior probabilities:
l  Pr [green] = 0.9 (probability that the sequence is ok)
l  Pr [red] = 0.1 (probability that the

sequence gives a bug)

l  Cumulative probabilities, e.g.:

l  Pr [A, ¬D, D] = Πf f (A, ¬D, D) = 0.9 x ... x ...
-  f are the various elements of knowledge

64

Statistical Invariant Inference: Summary
l  Main issues:

-  choose suitable behavioral properties
-  compute efficiently complex products of probabilities for a huge

number of candidate behaviors
-  classify possible behaviors by their probabilities
-  introduce effective ad hoc factors

l  Advantages:
-  reasonably robust w.r.t. the choice of prior probabilities
-  customizable: can incorporate very specific probability factors
-  can handle large “real” programs

l  Disadvantages:
-  unsound
-  mostly limited to simple behavioral properties
-  best suited for “systems” code

(where full functional correctness is usually not a concern)

