E'H Ziirich

Chair of Software Engineering

Software Verification

Verification of
Real-time Systems

Carlo A. Furia

Program Verification: the very idea

P: a program S: a specification
max (a, b: INTEGER): INTEGER
do require
if a>b then true
Result = a
else ensure
Result:= b Result>= a
end Result>=b
end

Does PES hold?

The Program Verification problem:

. Given: a program P and a specification S

. Determine:if every executionof P, for every value of input parameters,
satisfies S

Real-time Verification

P: a program S: a specification
max (a, b: INTEGER): INTEGER ensure
do Result»>= a
if a> b then Result>=b
Result = a
else ensure -- real-time
Result:= b "max terminates no sooner
end than 3 ms and no later than
end 10 ms after invocation”

Does PES hold?

The Real-time Verification problem:

. Given: program P (embedded in environment E)
and real-time specification S

. Determine: if every execution of P (within E) satisfies S

Real-time Programs and Systems

Def. Real-time specification: specification that includes
exact timing information.

Def. Real-time computation: computation whose
specification is real-time. In other words: computation
whose correctness depends not only on the value of the
result but also on when the result is available.

. The timing of a piece of software is usually dependent on the
environment where the computation takes place

. Hence, in real-time verification the focus shifts from programs to
(software-intensive) systems

. The purely computational aspects can often be analyzed in isolation

. Real-fime verification can then focus on real-time aspects of the
system

- e.g., synchronization, deadlines, delays, ...

while abstracting away most of the rest

Decidability vs. Expressiveness Trade-Off ©

The Real-time Verification problem:

. Given: program P (embedded in environment E) and real-time
specification S

. Determine: if every execution of P (within E) satisfies S

P: a system S: a real-time specification
F(P): formal model of P N(S): formal annotation for S

Does F(P) E N(S) hold?
. The classes of F(P) and N(S) should guarantee:

- enough expressiveness to include a quantitative notion
of fime

- decidability of the verification problem

Real-time Model-Checking

The Real-time Model Checking problem:

. Given: a timed automaton A
and a mefric temporal-logic formula F

o Determine: if every run of A satisfies F or not

- if not, also provide a counterexample:
a run of A where F does not hold

?
A: a timed automaton A E F F: a metric temporal-logic formula

. The model-checking paradigm is naturally extended to real-time systems
. Different choices are possible for the family of automataand of formulae
Linear fime is the standard option for real-time (as opposed to branching time)

A different attribute of time that becomes relevant in quantitative models is
discrete vs. dense time

Discrete vs. dense (continuous) time

Discrete time

sequence of isolated "steps”

every instant has a unique
successor

e.g.: the naturalsN ={0, 1, 2, ...}

+ simple and intuitive

+ verificationusually decidable
(and acceptably complex)

+ robust and elegant theoretical
framework

- cannot model true asynchrony

- unsuitable to model physical
variables

Dense (or continuous) time

arbitrarily small distances

the successor of an instant is
not defined

e.g.: the reals R

+ can model true asynchrony

+ accurate modeling of
physical variables

- tricky to understand

- verificationoften
undecidable (or highly
complex)

- lacks a unifying framework

Discrete Real-time Model-Checking

Timed Automata and
Metric Temporal Logic

Discrete Real-time Model-Checking

Discrete real-time model checking extends standard
“untimed” model checking straightforwardly:

o Discrete Timed Automata (TA) extend the Finite-State
Automata (FSA)

o Metric Temporal Logic (MTL) extends Linear Temporal
Logic (LTL)

The Discrete Real-time Model Checking problem:

. Given: a discrete TA A and an MTL formula F
. Determine: if every run of A satisfies F or not

_ if not, also provide a counterexample: a run of A where F
does not hold

A:a discrete TA A |:7F F: an MTL formula

Timed Automata: Syntax

cooking

10

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA)
A tuple [Z,S,C,I,E, FI:

2: finite nonempty (input) alphabet

. S: finite nonempty set of locations
(i.e., discrete states)

« C: finite set of clocks
. I,F:setof initial/final states

E: finite set of edges [s, 0, ¢c,p,s']
_ s e S:source location
_ s' € S: target location
_ 0 € XZ:input character (also "label”)

_ ¢ clock constraint in the form:
ci=x*k|-c|clAac2

« X,y € Care clocks

cooking

« k € N isan integer constant

o % is a comparison operator among <, ¢, >, 2, =

- p S C:setof clock that are reset (to 0)

Timed Automata: Semantics

Accepting run:

r= [off, (x=0, y=0)]
[on, (x=0, y=3)]
[cooking, (x=8, y=0)]
[on, (x=81, y=73)]
[off, (x=85, y=77)]

Over input timed word:

W = [furn_on, 3]
[start, 11]
[stop, 84]
[turn_off, 88]

cooking

Timed Automata: Semantics

Def. A timed word w = w(1) w(2) ... w(n) € (Z x N)* is a sequence
of pairs [a(i), (i)] such that:

- the sequence of timestamps (1), 1(2), ..., t(n) is increasing
- [o(i), t(i)] represents the i-th character o(i) read at time t(i)

Def. Anaccepting runof a TA A=[%,S,C, I, E,F]
over input timed word w = [a(1), 1(1)] ... [a(n), T(n)] € (Z x N)* is a
sequence r = [s(0), v(0,1), ..., v(0,|C)] ... [s(n), v(n,1), ..., v(n,|C])]
€ (S x NI¢ly* of (extended) states such that:

- it starts from an initial and ends in an accepting state: s(0) €I, s(n) € F
— initially all clocks are reset to 0: v(0,k)=0 forall 1<k« |C]

- for every transition (0 < i < n):

[s(i)v(i,1)...v(i,|C])] --> [s(i+1) v(i+1,1) ... v(i+1,|C|)]
some edge [s(i), o(i+1), c, p, s(i+1)]in E is followed:

. the clock values v(i,1) + (+(i+1) - t(i)) ... v(i,|C|) + (+(i+1) - +(i))
satisfy the constraint c

o« V(i+1,k) = if k-th clockisin p then O else v(i k) + t(i+1) - 1(i)

13

Timed Automata: Semantics

Def. Any TA A=[X,S,C,I,E, F]defines
a set of input timed words (A):
(AY 2 {we€E (ZxN)* | there is
an accepting run of A
over w }

(A) is called the language of A

With regular expressions and arithmetic:

(Ay= ([turn_on, t,]
([start, 1,] [stop, t3])*

[turn_off, 1,1)*

with ta-1, < 300 and ty-ty 2 1

14

Metric (Linear) Temporal Logic

«[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded)
time units in the future”

. [any, t <17~ [stop, 2] [stop, 3] [any, 4] [any, 7] ...
. [any, T < 37* [stop, 3][any, 4] [any, T >4]...

[1(2,4] start

"start holds between 2 (excluded) and 4 (included) time units in the future"”
. [any, O] [any, 1] [any, 2] [start, 3] [start, 4] [any, T > 4]*

. [any, O] [any, 1] [any, 2] [start, 3] [any, T > 4]*

. [stop, O] [stop, 1]

15

Metric (Linear) Temporal Logic

[] (start = <(3,10] stop)

“every occurrence of start is followed by an occurrence
of stop between 3 (excluded) and 10 (included) time
units in the future”

cook U(3,10] stop

"stop occurs between 3 (excluded) and 10 (included) time
units in the future, and cook holds until then"

16

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae:
Fu=p | -F| FAG | FU«a,b>6

with p € P any atomic proposition and <a,b> an interval of
the time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

« hext: XF 2 TrueVU[1,1]F
« bounded until: F U<«a,b> G

. bounded eventually: <«<ab>F 2 True U<ab> F
. bounded always: ka,b> F & -<<abs> -F

. intervals can be unbounded; e.g., [3, =)

. intervals with pseudo-arithmetic expressions; e.g.:
e >3 for [3,)
. =1for[11]
. [0, =) is simply omitted

©

17

Metric Temporal Logic: Semantics

Def. A timedwordw = [0(1), 1(1)] [0(2), t(2)] ... [a(n), T(n)] € (P x N)*
satisfiesLTL formula F at position1<i< n, denotedw, i £ F, when:

- W,iEp iff p=o(i)
~ w,ie-F iff w,iEF does not hold
_wW,ieEFAG iff bothw,ikFandw,ik G hold

- w,ikEFU«,b>6 iff for somei< j<nsuchthat t(j) - t(i) € <a,b>
itissw,jEGand foralli<k<jitisw,kEF

o i.e., F holds until G will hold within<a, b>

For derived operators:

w,iEw<a,b>F iff forsomei< j<nsuchthat +(j) - t(i) € <a,b>
itissw,jEF
. i.e., F holds eventually within<a,b>
w,iE[lka,b>F iff foralli<j<nsuchthat t(j) - (i) € <a,b>
itistw,jEF
. i.e., F holds always within<a,b>

18

Metric Temporal Logic: Semantics

Def. Satisfaction:
weF 2 w,<1EF

i.e., Timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words (F):
(Fy2{wePxN)*| weF}

(F) is called the language of F

19

Discrete Real-time Model-Checking

From Real-time to Untimed
Model-Checking

20

Discrete-time Real-time Model Checking ©

An semantic view of the Real-time Model Checking problem:
Given: a timed automaton A and an MTL formula F

o if (A) N (-~ F)is empty then every run of A satisfies F
« if (A)N (- F)is not empty then some run of A does not satisfy F
~ any member of the nonempty intersection (A) N (- F) is a counterexample

How to check (A) N (- F) = @ algorithmically (given A, F)?

For a discrete time domain we can reduce real-time model
checking to (untimed) model-checking:
« Transform timed automaton A into finite-state
automaton A’
« Transform MTL formula F intfo LTL formula F'
(AN (-FY=0 iff (AYN(=FY=0
« Re-use standard model-checking algorithms 21

Reduce discrete-time TAs to FSAs

Use states of an FSA to "count” discrete time
steps according to the semantics of the TA

~
. Transitions with specialC
events 1 are time steps

without events.
'« ony represents location
> 1 onwith clock x = 0
- on, ¢ represents location
on with clock x >1

O

22

Reduce discrete-time MTL to LTL

Use next operator X to "count” discrete time
steps according to the semantics of the MTL
formula

~<>[1,3]p becomes Xp v XXp v XXXp
« More compactly X(p v X(p v Xp))

_[125 p becomes X°[](p v T)
. Xp is a shorthand for XXXXXp

. The disjunction is needed because we may have
time increments without events

_ The encoding for bounded until is a bit more
complicated but not different in principle

23

Discrete-time Real-time MC: Complexity

There is an exponential blow-up in complexity when
switching from (untimed) linear-time model
checking to discrete-time real-time model
checking:

. Discrete-time real-time MTL model checking:
EXPSPACE-complete

- in practice: double-exponential time

. LTL model checking: PSPACE-complete
~ in practice: singly-exponential time

« The blow up occurs only if the constants (in timed
automata and MTL formulas) are encoded succinctly in
binary

- blow-up due to the "unrolling” of binary constants as FSA
states or nested next operators

24

Dense Real-time Model-Checking

Timed Automata and
Metric Temporal Logic

25

Dense Real-time Model-Checking ©

Dense real-time model checking considers the same model as
discrete real-time model checking but with R>0 as time
domain:

. A dense Timed Automaton (TA) models the system

. Dense-time Metric Temporal Logic (MTL) models the
property

. The syntax of TA and MTL need not be changed for dense time

- with the possible exception of allowing fractional time bounds
. The semantics of TA and MTL is also unchanged except that:
. R0 replaces N as time domain

. As we did with untimed model checking, we will use finite-word
models for automata and logic.

. Unlike in untimed model checking, this choice affects some results.

(We will mention some details only later for simplicity.)
26

Dense Real-time Model-Checking

Dense real-time model checking extends standard
"untimed” model checking:

« Timed Automata (TA) extend Finite-State Automata
(FSA)

« Metric Temporal Logic (MTL) extends Linear Temporal
Logic (LTL)

The Dense Real-time Model Checking problem:
. Given: a dense TA A and an MTL formula F
. Determine: if every run of A satisfies F or not

- if not, provide a counterexample: a run of A where F does not hold

D
Aia TA A E F F: an MTL formula

27

Timed Automata: Syntax

cooking

28

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA):
a tuple [£,S,C, I, E,FI

2: finite nonempty (input) alphabet

. S: finite nonempty set of locations
(i.e., discrete states)

« C: finite set of clocks
. I,F:setof initial/final states

E: finite set of edges [s, 0, ¢c,p,s']
_ s e S:source location
_ s' € S: target location
_ 0 € XZ:input character (also "label”)

_ ¢ clock constraint in the form:
ci=xxk|-clclnc?

« X,y € Care clocks

cooking

« k € N isan integer constant

o % is a comparison operator among <, ¢, >, 2, =

- p S C:setof clock that are reset (to 0)

Timed Automata: Semantics

Accepting run:

r= [off, (x=0, y=0)]
[on, (x=0, y=3.2)]
[cooking, (x=8.5, y=0)]
[on, (x=81.7, y=73.2)]
[of f, (x=84.91, y=76.41)]

Over input timed word:

W = [furn_on, 3.2]
[start, 11.7]
[stop, 84.9]
[turn_off, 88.11]

30

Timed Automata: Semantics

Def. A timed word w = w(1) w(2) ... w(n) € (£ x R)* is a sequence
of pairs [o(i), 1(i)] such that:

- the sequence of timestamps (1), 1(2), ..., t(n) is increasing
- [o(i), t(i)] represents the i-th character o(i) read at time t(i)

Def. An accepting run of a TA A=[X, S,C, I, E, F]over input timed word

w = [a(1), t(1)] ... [o(n), T(n)] € (£ x R)* is a sequence

r = [s(0), v(0,1), ..., v(0,1CN] ... [s(n), v(n,1), ..., v(n,|C])] € (5 x RICI)y*
of (extended) states such that:

- it starts from an initial and ends in an accepting state: s(0) € I, s(n) € F
— initially all clocks are reset t0 0: v(0,k) =0 forall1<k< [C]

- for every transition (0 <i < n):
[s() v(i,1) ... v(i,IC|]) T - [s(i+1) v(i+1,1) ... v(i+1,|C|)]
some edge [s(i), o(i+1), c, p, s(i+1)] in E is followed:

. the clock values v(i,1) + (t(i+1) - (i) ... v(i,|C]) + (+(i+1) - 1(i))
satisfy the constraint c

o« V(i+1 k) = if k-th clock is in p then O else v(i k) + +(i+1) - (i)

31

Timed Automata: Semantics

Def. Any TA A=[%,S,C, I, E, F]defines
a set of input tfimed words (A):
(AY2{we (ZxR)* | thereisan
accepting run of Aover w }

(A) is called the language of A

With regular expressions and arithmetic:

(A) = ([turn_on, 1]
([start, 1,] [stop, t3])*
[turn_off, 1,1)*
with t3-t, < 300 and t,-t; > 1

32

Metric (Linear) Temporal Logic

«[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded) fime
units in the future”

. [any, t <27~ [stop, 2] [stop, 3] [any, 3.5][any, 3.7]...
. [any, t<3.99]* [stop, 3.99][any, 4] [any, t > 4] ...

[1(2,4] start

"start holds between 2 (excluded) and 4 (included) time units in the future"”
. [any, t<2][start, 2.2][start, 3] [start, 4] [any, T> 4] ...

. [any, t<2][start,4][any, t>4]..

. [stop, O] [stop, 0.3][stop, 0.7]

33

Metric (Linear) Temporal Logic

[] (start = <(3,10] stop)

“every occurrence of start is followed by an occurrence
of stop between 3 (excluded) and 10 (included) time
units in the future”

cook U(3,10] stop

"stop occurs between 3 (excluded) and 10 (included) time
units in the future, and cook holds until then"

34

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae:
Fu=p | -F| FAG | FU«a,b>6

with p € P any atomic proposition and <a,b> an interval of
the time domain (w.l.0.g. with intfeger endpoints).

Temporal (modal) operators:

. next: XF 2TrueU[11]F
« bounded until: F U<«a,b> G

. bounded eventually: <><ab>F £ True U<ab> F
. bounded always: kab>F 2 -<<ab>-F

. intervals can be unbounded; e.g., [3, =)

. intervals with pseudo-arithmetic expressions; e.g.:

e >3 for [3, «)
e =1for[11]
. [0, =) is simply omitted

©

35

Metric Temporal Logic: Semantics

Def. A timedwordw = [o(1), t(1)] [0(2), t(2)] ... [a(n), t(n)] € (P x R)*
satisfiesLTL formula F at position1< i< n, denotedw, i £ F, when:

- W,iEp iff p=o(i)
~ w,ie-F iff w,iEF does not hold
_w,ieEFAG iff bothw,ikFandw,ik G hold

- w,ieEFU«a,b>G iff forsomeiz< j<nsuchthat t(j) - 1(i) € <a,b>
itissw,jEGand foralli<k<jitisw, kEF

o i.e., F holds until G will hold within<a, b>

For derived operators:

w,iE<w<ab>F iff forsomei< j<nsuchthat t(j)- t(i) € <a,b>
itissw,jEF
. i.e., F holds eventually within<a,b>

w,iE[lka,b>F iff foralli<j<nsuch that t(j)- (i) € <a,b>
itistw,jEF
. i.e., F holds always within<a,b>

Metric Temporal Logic: Semantics

Def. Satisfaction:
weF 2 w,1EkF

i.e., Timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words (F):
(Fy2{we(PxR)* |weF}

(F) is called the language of F

37

Dense Real-time Model-Checking

What's Decidable?

38

Automata-theoretic real-time model-checking?Q

Let's try to extend the automata-theoretic model
checking paradigm to real-time.
Its three algorithmic components:

« MTL2TA: given MTL formula F build TA
a(F) such that (F) = (a(F))

. TA-Intersection: given TAs A, B build
TA C such that (A) N (B) = (C)

. TA-Emptiness: given TA A check whether
(AY = 0 is the case

Which of these algorithms are feasible over real-time?

39

TAs not Closed under Complement

P
A:adense TA A |: F F: a dense-time MTL formula

Fundamental problem:

Dense timed automata are not closed under
complement

The complement of the language

of this TA isn't accepted by any TA:

. language of this TA: v
"there exist two p's separated by one t.u.” p

. complement language:
“no two p's are separated by one t.u."

. intuition: need a clock for each p within
the past time unit, but there can be an
unbounded number of such p's because time is dense 40

TAs not Closed under Complement

Fundamental problem:

. Dense TAs are not closed under complement

« MTL is clearly closed under complement

_ Language of the TA: < (pA<©=1p)
_ Complement language of the TA:
-.<>(p/\<>:1p):[](p:)-.<>:1p)
« Hence, automata-theoretic dense
real-time model-checking
is unfeasible (in general)

Dense MTL Model Checking is Undecidable ©

An even more fundamental problem:

The dense-time model-checking problem for MTL
and TAs is undecidable (for infinite words)

- no approach is going to work, not just
the automata-theoretic one

MTL and TAs are "too expressive" over dense time

42

What's Decidable about Timed Automata

Let's revisit the three algorithmic components of
automata-theoretic model checking:

« MTL2TA: given MTL formula F build TA
a(F) such that (F) = (a(F))
. undecidable problem*
. TA-Intersection: given TAs A, B build
TA C such that (A) N (B) = (C)
. decidable
. TA-Emptiness: given TA A check whether
(A) = @ is the case
. decidablel

*(for infinite words: see clarification later)

43

Dense Real-time Model-Checking

Intersection of Timed Automata

44

TA-Intersection: running TAs in paraliel

Given TAs A, B it is always possible to build automaticallya TA
C that accepts precisely the words that both A and B accept.

TA C represents all possible parallel runs of A and B where a timed
word is accepted if and only if both A and B would accept it. The
construction is called "product automaton”.

45

TA-Intersection: Example

cookin

TA-Intersection: running TAs in paraliel ©

Def. Given TAs A=[Z, SA, CA, TA EA FAland B=[Z, SB, CB IB EB FB]
let C2AxB=2[X, S¢ C¢ I EC FC] be defined as:

. SC25AxSE
. C¢2CAUC® (assumingw.l.o.g. that they are disjoint sets)
I¢2{(s,t)| s€I” and t+ € It}

[(s,1), 0, cAncB phUpB, (s', 1)] € EC iff
[s,0,cA pA,s']eEA and [t, o, cB, pB t']e EB

FC2{(s,t) | s€FA and t € FB}

Theorem.
(A x B)

(A) N (B)

47

Dense Real-time Model-Checking

Checking the Emptiness
of Timed Automata

48

TA-Emptiness

Givena TA A it is always possible to check automatically

if it accepts some timed word.

Outline of the algorithm:

Assume that clock constraintsinvolve integer constants only
Define an equivalence relation over extended states (location + clocks)

All extended states in the same equivalence class are equivalent
w.r.t. satisfaction of clock constraints

. The equivalence relation is such that there is a finite number
of equivalence classes for any given TA

Givena TA A, build an FSA reg(A) - the "region automaton":

- the states of reg(A) represent the equivalence classes of
the extended states of any run of of A

- the edges of reg(A) represent evolution of any extended state
within the equivalence class over any run of A

Checking the emptiness of reg(A) is equivalent o checking A's emptiness

49

Integer vs. Rational vs. Irrational

The domain for time is R>0

What about the domain for time constraints?
- constants in clock constraints of TAs (e.g.: x < k)

1. Same as the domain for time: R0

o XTI

. emptiness becomes undecidablel
2. Discrete time domain: integers Z

.eg. X<D

. emptiness fully decidable (see algorithm next)
3. Dense but not continuous: rationals Q>0

ox<1/3

. emptiness is reducible to the discrete case .

Integer vs. Rational

Dense but not continuous: rationals Q>0
. Let Abea TA with rational constants

. let m be the least common multiple of denominators of all
constants appearing in the clock constraints of A

. let A*m be the TA obtained from A by multiplying every
constants in the clock constraints by m

« A*m has only integers constants in its clock constraints
. A accepts any timed word

[a(1), 1(1)] [0(2), 1(2)] ... [o(n), t(h)]
iff A*m accepts the "scaled” timed word
[0(1), m*¥(1)] [0(2), m*t(2)] ... [o(n), m**(n)]

. Hence checking the emptiness of A*m is equivalent to checking
the emptiness of A

51

Equivalence Relation over Extended States ©

Letus fixaTAA=[Z,S,C, I, E,Flwith C=[x(1), ..., x(n)]

« For any clock x(i) in C let M(i) be the largest constant involving
clock x(i) in any clock constraint in E

« Let[v(1), .., v(n)]e R:0" denote a “clock evaluation” representing
any assignment of values to clocks

. Equivalence of two clock evaluations:
[v(1), ..., v(n)] ~ [v'(1), ..., vi(n)] iff all of the following hold:

1. Foralll<ic<n: int(v(i)) = int(v'(i)) or v(i), v'(i) > M(i)
2. Forall1<i,j<nsuch that v(i) < M(i) and v(j) < M(j):
frac(v(i)) < frac(v(j)) iff frac(v'(i))< frac(v'(j))
3. Forall1<i<nsuch that v(i) < M(i):
frac(v(i))=0 iff frac(v'(i))=0

Note: int(x) is the integer part of x;
frac(x) is the fractional part of x

For example: int(3.12) =3 frac(3.12)=0.12

52

Clock Regions

Def. A clock region is an equivalence class
of clock evaluations induced by the equivalence relation ~

« For a clock evaluationv = [v(1), ..., v(n)] € Rx0",
[[v]] denotes the clock region v belongs to

. As a consequence of the definition of ~, any clock
region can be uniquely characterized by a finite set of
constraints on clocks

. v=[0.4; 0.9; 0.7; 0] for 4 clocksw, x,y, z
e [[V]] iIs z=0<w<y<x<1

. Fact: clock regions are always in finite number

53

Clock Regions (cont'd)

More systematically:

. given a set of clocks C = [x(1), ..., x(n)]

. with M(i) the largest constant appearing
in constraints on clock x(i)

a clock region is uniquely characterized by

« For each clock x(i) a constraint in the form:
- x()=c withc=0,1, ..., M(i); or
~c-1<x()<c withc=1, .., M(i); or
- x(i) > M(i)

. For each pair of clocks x(i), x(j) a constraint in the form
- frac(x(i)) < frac(x(j))
- frac(x(i)) = frac(x(j))
- frac(x(i)) > frac(x(j))

(These are unnecessary if x(i) = ¢, x(j) = ¢, x(i) > M(i), or x(j) > M(j))

54

Clock Regions: Example

« Clocks C = [x, y]
M(X) = 2; M(y) = 3

. All 60 possible clock regions:

. 12 corner points
. 30 open line segments

. 18 open regions 4
2

o Enet

/|

55

Time-successors of Regions

Fact: a clock evaluation v satisfies a clock constraint c iff every
other clock evaluation in [[v]] satisfies c

Hence, we can say that a "clock region satisfies a clock constraint”

Def. The time successor time-succ(R) of a clock region R is the set
of all clock regions (including R itself) that can be reached from R
by letting time pass (i.e., without resetting any clock).

Given a clock region R it is always possible to compute all other
clock regions that can be reached from R by letting time pass
(i.e., without resetting any clock)

Graphically:

the time-successors of a region R are the regions that can be
reached by moving along a line parallel to the diagonal in the
upward direction, starting from any point in R

(For a formal definition see e.g.: Alur & Dill, 1994) 56

Time-successors of Regions: Example

Graphically: the time-successors of a region R are the regions that can be
reached by moving along a line parallel to the diagonal in the upward direction,
starting from any point in R

Example:

. successors of region T A
2<y<3;1cx<y-1 9
(other than the region itself):

e ¥y>3:1<x<2
e ¥y>3:x=2

. y=3:lax<2 1
e Y>3:x>2

. successors of region
y = 2; x = 2 (other than the
region itself):

e 2<y<3;x>2

57

Region Automaton Construction

©

For a timed automaton A it is always possible to build an FSA
reg(A) (the "region automaton” of A) such that:

(A) =0 iff (reg(A))=¢

Def. Givena TAA=[%,S,C, I, E,F]itsregionautomaton
reg(A) £ [Z,rS, rL,rE, rF]is definedas:

rS2{(s,r)| s€ S andrisa clock region}
rI2{(s,[[0,0,..0]) | seI}
- the clock region where all clocks are reset to O

rE(o, [s,r]) 2{(s',r') | [s,0,¢c,p,s']€EE
and there exists a regionr' '€ time-succ(r)
such that r'' satisfies c,and r' is obtained
fromr'’ by resettingall clocksinp t0 0}

rF2{(s,r)|seF}

58

Region Automaton: Example

on

O<y<l<zx

on

‘off ‘ off off
z>1l;y>1 I<y<l<zx y=1<uw
i =

cooking

O=y<x<l1

cookKin
y=Uxz=1 on

cooklng rx>1ly>1
y=0U;z>1

on
O<y<z<l1

on
O<y<l=x

on

y=1,z>1

y=1;z>1
Y
starty—1 :II‘
1@
‘EHHHE,’
0 >

59

Dense Real-time Model-Checking

Complexity, Variants, and Tools

60

Complexity of Emptiness Checking for TAs ©

. Building the region automaton and checking its
emptiness takes time exponential in the size of the

clock constraints

 Checking emptiness of a TA is a PSPACE-complete
problem

. Hence the region-automaton algorithm is worst-
case optimal

. However, variants of the emptiness checking
algorithm can achieve better performances in

practice

. mostly by using ad hoc data structures and
symbolic representations of regions that can be
manipulated efficiently

61

Variants of TA Emptiness Checking ©

Variants of the Emptiness Checking Algorithm are typically based
on more efficient (on average) representations of regions

. Representatives

- a clock region is represented by a concrete extended state
that belongs to it

- the concrete state is a "representative” of the region

- if it is suitably chosen, manipulating it is equivalent to
manipulating the whole region

« Clock constraints (a.k.a. zones)

- aregion is represented symbolically as a Boolean combination of
clock constraints

- successors are computed symbolically directly on the Boolean
expression

« Other equivalence relations (e.g., bisimulation)

- they can produce fewer equivalence classes

62

Tools for the Analysis of TAs

. Uppaal (Larsen, Petterson, Yi et al., ~1995)
« Kronos (Tripakis, Yovine et al., ~1995)

. HyTech (Henzinger et al., ~1994)

« PHAVer (Frehse, ~2005)

Remark: emptiness checking is also called
"reachability analysis”

the language of a TA A is empty iff the accepting
states of A cannot be reached in any computation

63

Dense Real-time Model-Checking

Getting Decidability Back

64

Decidable Dense Real-time MC

Model checking is undecidable over dense-time infinite words
for TAs and MTL formulas

As usual, we can trade-off some expressiveness in exchange
for decidability.

In particular, not mutually exclusively:

. Syntactic restrictions: use a real-time temporal logic with
less expressiveness

. Semantic restrictions: restrict (the density of) the time
domain in some way

- discretization
- finite words
- bounded variability

~ bounded time
65

Reducing the Expressiveness of MTL

There exist different real-time temporal logics for which
dense-time model checking is decidable.

Some examples:

. Strict subsets of MTL:

- MITL: MTL without punctual (i.e., singleton) intervals
(Alur, Henzinger; Hirshfeld, Rabinovich et al.)

- BMTL, SMTL, ...
(Ouaknine, Worrell et al.)

 Branching-time real-time logics:

~ TCTL
(Henzinger, Nicollin, Sifakis, Yovine, et al.)

66

Discretization of Dense Real-time M-C

Build approximations of TAs and MTL dense-time
semantics over discrete time, such that some results of
the discrete-time analysis apply to the dense-time
semantics as well.

In general these approaches are incomplete, that is they
can't be applied to certain classes of formulas or they
ignore certain classes of dense timed word.

. Digitization (Henzinger, Manna, Pnueli, 1992)
. Sampling (F., 2006)

67

Restrict the Semantics to Finite Words

Real-time model-checking of TAs and MTL s
undecidable for infinite timed words

_ infinite sequences of timestamped input symbols

It is decidable for finite words
(which we used in formally defining the
semantics)

This result came somewhat unexpectedly in
~2005 (Ouaknine & Worrell) and it contradicted
the "folk belief” that the undecidability for
infinite words carries over to finite words

68

Restrict the Semantics to Finite Words

©

There are various reasons, however, that lessen the
practical (and didactical) relevance of this

decidability resu
« While decidab

t. Mainly:
e, the problem has non-primitive

recursive complexity

- as complex as a computable function can bel

« The (current) algorithm for decidability is
nontrivial and difficult fo present concisely

- it uses techniques different than the region
automaton construction for TAs

- ho efficient

symbolic techniques have been

developed yet

69

Bounded Variability and Time

Other semantic restrictions to dense time that
makes that model-checking problem decidable
(over infinite time as well)
 Bounded variability:

“at most k events can occur within a time unit”
_ Wilke, 1994; F., 2008

. Bounded ftime:
"time only goes up to B”

_ QOuaknine, Rabinovich, Worrell, 2009

70

Dense Real-time Model-Checking

Other Models for Real-time

71

Other Models for Real-time

Research and practice in real-time systems has a wide
spectrum and heterogeneous concerns

There exist many different models that go beyond the
model-checking paradigm

Let us briefly consider two of them:

. Timed Petri nets: another concurrency model

. TRIO (and others): very expressive real-time temporal logics

Further reading:
F. et al. "Modeling time in computing”, Springer 2012

72

Timed Petri Nets (in a slide)

Petri Nets (PN) are a popular model for concurrency.
Many variants are available, including (real-)timed ones.

« PNs and timed PNs pre-date TAs but are less common
in automated verification

« More suitable for "natural” modeling of asynchrony

« Places store tokens turn_off

. Transitions fire, moving tokens around

. Time bounds on the firing time of transitions [0, 00)

Model of the microwave oven
(not equivalent o the TA models we've seen)

Bounded Petri nets: bound on the maximum number of
tokens that can be in any place in any run

. Essentially equivalent fo TAs in expressiveness
(with some semantic subtleties)

73

Full-fledged Real-time Temporal Logics

Another, quite different, approach to real-time modeling and analysis
uses very expressive first- (or even higher-) order temporal logic to
formalize any aspect of the system under analysis.

Example: the TRIO temporal logic, which includes:

. a core real-time temporal logic with real-time temporal operators
. first-order quantificationand arithmetic

. object-orientedconstructs

 higher-order extensions

Usage:

partial requirements (and formal documentation)

semi-automatedanalysis
development by refinement

74

