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Program Verification: the very idea 

max (a, b: INTEGER): INTEGER 

 do 

  if a > b then 

   Result := a 

  else 

   Result := b 

  end 

 end 

 

 require 

  true 

 

 ensure 

  Result >= a 

  Result >= b 

 

P: a program S: a specification 

Does            P ⊧ S               hold? 

The Program Verification problem: 

 Given: a program P and a specification S 

 Determine: if every execution of P, for every value of input parameters, 
satisfies S 
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Real-time Verification 

max (a, b: INTEGER): INTEGER 

 do 

  if a > b then 

   Result := a 

  else 

   Result := b 

  end 

 end 

 ensure 

  Result >= a 

  Result >= b 

 

 ensure  -- real-time 

 “max terminates no sooner 

  than 3 ms and no later than 

  10 ms after invocation” 

 

P: a program S: a specification 

Does            P ⊧ S               hold? 

The Real-time Verification problem: 

 Given: program P (embedded in environment E)  
          and real-time specification S 

 Determine: if every execution of P (within E) satisfies S 
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Real-time Programs and Systems 

 The timing of a piece of software is usually dependent on the 
environment where the computation takes place 

 Hence, in real-time verification the focus shifts from programs to 
(software-intensive) systems 

 The purely computational aspects can often be analyzed in isolation 

 Real-time verification can then focus on real-time aspects of the 
system 

e.g., synchronization, deadlines, delays, ... 

 while abstracting away most of the rest 

Def. Real-time specification: specification that includes 
exact timing information. 

Def. Real-time computation: computation whose 
specification is real-time. In other words: computation 
whose correctness depends not only on the value of the 
result but also on when the result is available. 
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Decidability vs. Expressiveness Trade-Off 

 The classes of F(P) and N(S) should guarantee: 

enough expressiveness to include a quantitative notion 
of time 

decidability of the verification problem 

The Real-time Verification problem: 

 Given: program P (embedded in environment E) and real-time 
specification S 

 Determine: if every execution of P (within E) satisfies S 

Does      F(P) ⊧ N(S)         hold? 

P: a system S: a real-time specification 

F(P): formal model of P N(S): formal annotation for S 
⇕ ⇕ 
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Real-time Model-Checking 

A: a timed automaton F: a metric temporal-logic formula A ⊧ F 

The Real-time Model Checking problem: 

 Given: a timed automaton A  
          and a metric temporal-logic formula F 

 Determine: if every run of A satisfies F or not 

if not, also provide a counterexample:  
a run of A where F does not hold 

 The model-checking paradigm is naturally extended to real-time systems 

 Different choices are possible for the family of automata and of formulae 

 Linear time is the standard option for real-time (as opposed to branching time) 

 A different attribute of time that becomes relevant in quantitative models is 
discrete vs. dense time 

? 
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Discrete vs. dense (continuous) time 

Discrete time 

 sequence of isolated “steps” 

 every instant has a unique 
successor 

 e.g.: the naturals N = {0, 1, 2, ...} 

 

+ simple and intuitive 

+ verification usually decidable 
(and acceptably complex) 

+ robust and elegant theoretical 
framework 
 

cannot model true asynchrony 

unsuitable to model physical 
variables 

Dense (or continuous) time 

 arbitrarily small distances 

 the successor of an instant is 
not defined 

 e.g.: the reals R 

 

+ can model true asynchrony 

+ accurate modeling of 
physical variables 
 

 

tricky to understand 

verification often 
undecidable (or highly 
complex) 

lacks a unifying framework 
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Discrete Real-time Model-Checking 

 

Timed Automata and 

Metric Temporal Logic 
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Discrete Real-time Model-Checking 

A: a discrete TA F: an MTL formula A ⊧ F 

The Discrete Real-time Model Checking problem: 

 Given: a discrete TA A and an MTL formula F 

 Determine: if every run of A satisfies F or not 

if not, also provide a counterexample: a run of A where F 
does not hold 

? 

Discrete real-time model checking extends standard 
“untimed” model checking straightforwardly: 

 Discrete Timed Automata (TA) extend the Finite-State 
Automata (FSA) 

 Metric Temporal Logic (MTL) extends Linear Temporal 
Logic (LTL) 
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Timed Automata: Syntax 
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Timed Automata: Syntax 

Def. Nondeterministic Timed Automaton (TA) 
 A tuple [Σ, S, C, I, E, F]: 

 Σ: finite nonempty (input) alphabet 

 S: finite nonempty set of locations 
(i.e., discrete states) 

 C: finite set of clocks 

 I, F: set of initial/final states 

 E: finite set of edges [s, σ, c, ρ, s'] 

s ∈ S: source location 

s' ∈ S: target location 

σ ∈ Σ: input character (also “label”) 

c: clock constraint in the form: 
 c ::= x ≈ k | ¬ c | c1 ∧ c2 

 x, y ∈ C are clocks 

 k ∈ N is an integer constant 

 ≈ is a comparison operator among <, ≤, >, ≥, = 

ρ ⊆  C: set of clock that are reset (to 0) 



12 

Timed Automata: Semantics 

Accepting run: 

r =  [off, (x=0, y=0)] 
  [on, (x=0, y=3)] 
   [cooking, (x=8, y=0)] 
  [on, (x=81, y=73)] 
   [off, (x=85, y=77)] 

Over input timed word: 
w =  [turn_on, 3] 
  [start, 11] 
   [stop, 84] 
   [turn_off, 88] 
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Timed Automata: Semantics 

Def. An accepting run of a TA A=[Σ, S, C, I, E, F] 

over input timed word w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ x N)* is a 

sequence r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)]  

   ∈ (S x N|C| )* of (extended) states such that: 

it starts from an initial and ends in an accepting state:   s(0) ∈ I,  s(n)  ∈ F 

initially all clocks are reset to 0:  v(0,k) = 0   for all 1 ≤ k ≤ |C| 

for every transition (0 ≤ i < n): 
        [ s(i) v(i,1) ... v(i,|C|) ]  -->  [ s(i+1) v(i+1,1) ... v(i+1,|C|) ] 
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed: 

 the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i)) 
satisfy the constraint c 

 v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i) 

Def.  A timed word w = w(1) w(2) ... w(n) ∈ (Σ x N)* is a sequence 
 of pairs [σ(i), t(i)] such that: 

the sequence of timestamps t(1), t(2), ..., t(n) is increasing 

[σ(i), t(i)] represents the i-th character σ(i) read at time t(i) 
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Timed Automata: Semantics 

Def. Any TA A=[Σ, S, C, I, E, F] defines 
   a set of input timed words ⟨A⟩: 
  ⟨A⟩ ≜ { w ∈ (Σ x N)*  | there is 
   an accepting run of A 
   over w } 

      ⟨A⟩ is called the language of A 

With regular expressions and arithmetic: 

 

⟨A⟩ = ( [turn_on, t1] 

     ([start, t2] [stop, t3])* 

     [turn_off, t4] )* 

 

  with t3-t2 ≤ 300 and t4-t1 > 1 
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Metric (Linear) Temporal Logic 

<>[2,4) stop 

“there is an occurrence of stop between 2 (included) and 4 (excluded) 

time units in the future” 

 [any, t ≤ 1]* [stop, 2] [stop, 3] [any, 4] [any, 7] ... 

 [any, t < 3]* [stop, 3] [any, 4] [any, t > 4] ... 

 

[](2,4] start 

“start holds between 2 (excluded) and 4 (included) time units in the future” 

 [any, 0] [any, 1] [any, 2] [start, 3] [start, 4] [any, t > 4]* 

 [any, 0] [any, 1] [any, 2] [start, 3] [any, t > 4]* 

 [stop, 0] [stop, 1] 
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Metric (Linear) Temporal Logic 

[] ( start ⇒ <>(3,10] stop ) 

“every occurrence of start is followed by an occurrence 

of stop between 3 (excluded) and 10 (included) time 

units in the future” 

 

cook U(3,10] stop 

“stop occurs between 3 (excluded) and 10 (included) time 

units in the future, and cook holds until then” 
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Metric (Linear) Temporal Logic: Syntax 

Def. Propositional Metric Temporal Logic (MTL) formulae: 

   F  ::=  p  |  ¬ F  |  F ∧ G  |  F U<a,b> G 

with p ∈ P any atomic proposition and <a,b> an interval of 

the time domain (w.l.o.g. with integer endpoints). 

Temporal (modal) operators: 

 next:         X F  ≜ True U[1,1] F 

 bounded until:   F U<a,b> G 

 bounded eventually:  <><a,b> F  ≜ True U<a,b> F 

 bounded always:   []<a,b> F  ≜ ¬ <><a,b> ¬F 

 intervals can be unbounded; e.g., [3, ∞) 

 intervals with pseudo-arithmetic expressions; e.g.: 

 ≥ 3 for [3, ∞) 

 = 1 for [1,1] 

 [0, ∞) is simply omitted 
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Metric Temporal Logic: Semantics 

Def. A timed word w =  [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P x N)* 
satisfies LTL formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when: 

w, i ⊧ p        iff    p = σ(i) 

w, i ⊧ ¬ F        iff    w, i ⊧ F does not hold 

w, i ⊧ F ∧ G      iff    both w, i ⊧ F and w, i ⊧ G hold 

w, i ⊧ F U<a,b> G  iff    for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F 

 i.e., F holds until G will hold within <a, b> 

For derived operators: 

w, i ⊧ <><a,b> F iff   for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ F 

 i.e., F holds eventually within <a,b> 

w, i ⊧ []<a,b> F iff   for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ F 

 i.e., F holds always within <a,b> 
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Metric Temporal Logic: Semantics 

Def. Satisfaction: 
         w ⊧ F    ≜   w, 1  ⊧ F 

i.e., timed word w satisfies formula F initially 

Def. Any MTL formula F defines a set of timed words ⟨F⟩: 
    ⟨F⟩ ≜ { w ∈ (P x N)*  |  w ⊧ F } 

 ⟨F⟩ is called the language of F 
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Discrete Real-time Model-Checking 

 

From Real-time to Untimed 

Model-Checking 
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Discrete-time Real-time Model Checking 

An semantic view of the Real-time Model Checking problem: 

Given: a timed automaton A and an MTL formula F 

 if ⟨A⟩ ∩ ⟨¬ F⟩ is empty then every run of A satisfies F 

 if ⟨A⟩ ∩ ⟨¬ F⟩ is not empty then some run of A does not satisfy F 

any member of the nonempty intersection ⟨A⟩ ∩ ⟨¬ F⟩ is a counterexample 

How to check ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ algorithmically (given A, F)? 

 

For a discrete time domain we can reduce real-time model 

checking to (untimed) model-checking: 

 Transform timed automaton A into finite-state 

automaton A' 

 Transform MTL formula F into LTL formula F' 

 ⟨A⟩ ∩ ⟨¬ F⟩ = ∅    iff    ⟨A'⟩ ∩ ⟨¬ F'⟩ = ∅ 

 Re-use standard model-checking algorithms 
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Reduce discrete-time TAs to FSAs 

Use states of an FSA to “count” discrete time 

steps according to the semantics of the TA 

 transitions with special 

events τ are time steps 

without events. 

 on0 represents location 

on with clock x = 0 

 on≥1 represents location 

on with clock x ≥ 1 
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Reduce discrete-time MTL to LTL 

Use next operator X to “count” discrete time 
steps according to the semantics of the MTL 
formula 

<>[1,3] p  becomes  Xp ∨ XXp ∨ XXXp 

 More compactly X(p ∨ X(p ∨ Xp)) 

[]≥5 p becomes X5 [](p ∨ τ) 

 X5p is a shorthand for XXXXXp 

 The disjunction is needed because we may have 
time increments without events 

The encoding for bounded until is a bit more 
complicated but not different in principle 



24 

Discrete-time Real-time MC: Complexity 

There is an exponential blow-up in complexity when 
switching from (untimed) linear-time model 
checking to discrete-time real-time model 
checking: 

 Discrete-time real-time MTL model checking: 
EXPSPACE-complete 

in practice: double-exponential time 

 LTL model checking: PSPACE-complete 

in practice: singly-exponential time 

 The blow up occurs only if the constants (in timed 
automata and MTL formulas) are encoded succinctly in 
binary 

blow-up due to the “unrolling” of binary constants as FSA 
states or nested next operators 
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Dense Real-time Model-Checking 

 

Timed Automata and 

Metric Temporal Logic 
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Dense Real-time Model-Checking 

Dense real-time model checking considers the same model as 
discrete real-time model checking but with R≥0 as time 
domain: 

 A dense Timed Automaton (TA) models the system 

 Dense-time Metric Temporal Logic (MTL) models the 
property 

 The syntax of TA and MTL need not be changed for dense time 

with the possible exception of allowing fractional time bounds 

 The semantics of TA and MTL is also unchanged except that: 

 R≥0 replaces N as time domain 

 As we did with untimed model checking, we will use finite-word  
models for automata and logic. 

 Unlike in untimed model checking, this choice affects some results.  
(We will mention some details only later for simplicity.) 
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Dense Real-time Model-Checking 

A: a TA F: an MTL formula A ⊧ F 

The Dense Real-time Model Checking problem: 

 Given: a dense TA A and an MTL formula F 

 Determine: if every run of A satisfies F or not 

if not, provide a counterexample: a run of A where F does not hold 

? 

Dense real-time model checking extends standard 
“untimed” model checking: 

 Timed Automata (TA) extend Finite-State Automata 
(FSA) 

 Metric Temporal Logic (MTL) extends Linear Temporal 
Logic (LTL) 
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Timed Automata: Syntax 
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Timed Automata: Syntax 

Def. Nondeterministic Timed Automaton (TA): 
  a tuple [Σ, S, C, I, E, F]: 

 Σ: finite nonempty (input) alphabet 

 S: finite nonempty set of locations 
(i.e., discrete states) 

 C: finite set of clocks 

 I, F: set of initial/final states 

 E: finite set of edges [s, σ, c, ρ, s'] 

s ∈ S: source location 

s' ∈ S: target location 

σ ∈ Σ: input character (also “label”) 

c: clock constraint in the form: 
c ::= x ≈ k | ¬ c | c1 ∧ c2 

 x, y ∈ C are clocks 

 k ∈ N is an integer constant 

 ≈ is a comparison operator among <, ≤, >, ≥, = 

ρ ⊆  C: set of clock that are reset (to 0) 



30 

Timed Automata: Semantics 

Accepting run: 

r =  [off, (x=0, y=0)] 
  [on, (x=0, y=3.2)] 
   [cooking, (x=8.5, y=0)] 
  [on, (x=81.7, y=73.2)] 
   [off, (x=84.91, y=76.41)] 

Over input timed word: 

w =  [turn_on, 3.2] 
  [start, 11.7] 
   [stop, 84.9] 
   [turn_off, 88.11] 
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Timed Automata: Semantics 

Def. An accepting run of a TA A=[Σ, S, C, I, E, F] over input timed word  
 w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ x R)* is a sequence  
 r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)] ∈ (S x R|C|)*  
  of (extended) states such that: 

it starts from an initial and ends in an accepting state:   s(0) ∈ I, s(n)  ∈ F 

initially all clocks are reset to 0:   v(0,k) = 0  for all 1 ≤ k ≤ |C| 

for every transition (0 ≤ i < n):  
  [ s(i) v(i,1) ... v(i,|C|) ]  -->  [ s(i+1) v(i+1,1) ... v(i+1,|C|) ] 
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed: 

 the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i))  
satisfy the constraint c 

 v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i) 

Def. A timed word w = w(1) w(2) ... w(n) ∈ (Σ x R)* is a sequence 
    of pairs [σ(i), t(i)] such that: 

the sequence of timestamps t(1), t(2), ..., t(n) is increasing 

[σ(i), t(i)] represents the i-th character σ(i) read at time t(i) 
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Timed Automata: Semantics 

Def. Any TA A=[Σ, S, C, I, E, F] defines 

 a set of input timed words ⟨A⟩: 

   ⟨A⟩ ≜ { w ∈ (Σ x R)*  | there is an  

   accepting run of A over w } 

        ⟨A⟩ is called the language of A 

With regular expressions and arithmetic: 

 

⟨A⟩ = ( [turn_on, t1] 

     ([start, t2] [stop, t3])* 

     [turn_off, t4] )* 

  with t3-t2 ≤ 300 and t4-t1 > 1 
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Metric (Linear) Temporal Logic 

<>[2,4) stop 

“there is an occurrence of stop between 2 (included) and 4 (excluded) time 

units in the future” 

 [any, t < 2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ... 

 [any, t < 3.99]* [stop, 3.99] [any, 4] [any, t > 4] ... 

 

[](2,4] start 

“start holds between 2 (excluded) and 4 (included) time units in the future” 

 [any, t ≤ 2] [start, 2.2] [start, 3] [start, 4] [any, t > 4] ... 

 [any, t ≤ 2] [start, 4] [any, t > 4] ... 

 [stop, 0] [stop, 0.3] [stop, 0.7] 
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Metric (Linear) Temporal Logic 

[] ( start ⇒ <>(3,10] stop ) 

“every occurrence of start is followed by an occurrence 

of stop between 3 (excluded) and 10 (included) time 

units in the future” 

 

cook U(3,10] stop 

“stop occurs between 3 (excluded) and 10 (included) time 

units in the future, and cook holds until then” 
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Metric (Linear) Temporal Logic: Syntax 

Def. Propositional Metric Temporal Logic (MTL) formulae: 

    F  ::=  p  |  ¬ F  |  F ∧ G  |  F U<a,b> G 

with p ∈ P any atomic proposition and <a,b> an interval of 

the time domain (w.l.o.g. with integer endpoints). 

Temporal (modal) operators: 

 next:         X F  ≜ True U[1,1] F 

 bounded until:   F U<a,b> G 

 bounded eventually:  <><a,b> F  ≜ True U<a,b> F 

 bounded always:   []<a,b> F  ≜ ¬ <><a,b> ¬F 

 intervals can be unbounded; e.g., [3, ∞) 

 intervals with pseudo-arithmetic expressions; e.g.: 

 ≥ 3 for [3, ∞) 

 = 1 for [1,1] 

 [0, ∞) is simply omitted 



36 

Metric Temporal Logic: Semantics 

Def. A timed word w =  [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P x R)* 
satisfies LTL formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when: 

w, i ⊧ p        iff    p = σ(i) 

w, i ⊧ ¬ F        iff    w, i ⊧ F does not hold 

w, i ⊧ F ∧ G      iff    both w, i ⊧ F and w, i ⊧ G hold 

w, i ⊧ F U<a,b> G  iff    for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F 

 i.e., F holds until G will hold within <a, b> 

For derived operators: 

w, i ⊧ <><a,b> F iff   for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ F 

 i.e., F holds eventually within <a,b> 

w, i ⊧ []<a,b> F iff   for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ F 

 i.e., F holds always within <a,b> 
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Metric Temporal Logic: Semantics 

Def. Satisfaction: 
          w ⊧ F    ≜   w, 1  ⊧ F 

i.e., timed word w satisfies formula F initially 

Def. Any MTL formula F defines a set of timed words ⟨F⟩: 
   ⟨F⟩ ≜ { w ∈ (P x R)*  | w ⊧ F } 

       ⟨F⟩ is called the language of F 
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Dense Real-time Model-Checking 

 

What's Decidable? 
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Automata-theoretic real-time model-checking? 

Let's try to extend the automata-theoretic model 

checking paradigm to real-time.  

Its three algorithmic components: 

 

 MTL2TA: given MTL formula F build TA 

a(F) such that ⟨F⟩ = ⟨a(F)⟩ 

 TA-Intersection: given TAs A, B build 

TA C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩ 

 TA-Emptiness: given TA A check whether 

⟨A⟩ = ∅ is the case 

 

Which of these algorithms are feasible over real-time? 
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TAs not Closed under Complement 

A: a dense TA F: a dense-time MTL formula A ⊧ F 
? 

Fundamental problem: 

Dense timed automata are not closed under 

complement 

The complement of the language 

of this TA isn't accepted by any TA: 

 language of this TA: 

“there exist two p's separated by one t.u.” 

 complement language: 

“no two p's are separated by one t.u.” 

 intuition: need a clock for each p within 

the past time unit, but there can be an 

unbounded number of such p's because time is dense 
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TAs not Closed under Complement 

Fundamental problem: 

 Dense TAs are not closed under complement 

 MTL is clearly closed under complement 

Language of the TA:    <> ( p ∧ <>=1 p ) 

Complement language of the TA: 

¬ <> ( p ∧ <>=1 p ) = [] ( p ⇒ ¬ <>=1 p ) 

 Hence, automata-theoretic dense 

real-time model-checking 

is unfeasible (in general) 
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Dense MTL Model Checking is Undecidable 

An even more fundamental problem: 
 

The dense-time model-checking problem for MTL 
and TAs is undecidable (for infinite words) 

no approach is going to work, not just  
the automata-theoretic one 
 

MTL and TAs are “too expressive” over dense time 
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What's Decidable about Timed Automata 

Let's revisit the three algorithmic components of 
automata-theoretic model checking: 
 
 MTL2TA: given MTL formula F build TA 
a(F) such that ⟨F⟩ = ⟨a(F)⟩ 
 undecidable problem* 

 TA-Intersection: given TAs A, B build 
TA C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩ 
 decidable 

 TA-Emptiness: given TA A check whether 
⟨A⟩ = ∅ is the case 
 decidable! 
 

*(for infinite words: see clarification later) 
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Dense Real-time Model-Checking 

 

Intersection of Timed Automata 
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Given TAs A, B it is always possible to build automatically a TA 

C that accepts precisely the words that both A and B accept. 

TA C represents all possible parallel runs of A and B where a timed 

word is accepted if and only if both A and B would accept it. The 

construction is called “product automaton”. 

TA-Intersection: running TAs in parallel 
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TA-Intersection: Example 

x = 
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Def. Given TAs A=[Σ, SA, CA, IA, EA, FA] and B=[Σ, SB, CB, IB, EB, FB] 
 let     C ≜ A x B ≜ [Σ, SC, CC, IC, EC, FC]  be defined as: 

 SC ≜ SA  x SB 

 CC ≜ CA  ∪ CB  (assuming w.l.o.g. that they are disjoint sets) 

 IC ≜ { (s, t) | s ∈ IA  and t ∈ IB } 

 [(s, t), σ, cA ∧ cB, ρA ∪ ρB, (s', t')] ∈ EC   iff 
  [s, σ, cA, ρA, s'] ∈ EA    and     [t, σ, cB, ρB, t']∈ EB 

 FC ≜ { (s, t) | s ∈ FA  and t ∈ FB } 

Theorem. 

⟨A x B⟩ 

= 

⟨A⟩ ∩ ⟨B⟩ 

TA-Intersection: running TAs in parallel 
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Dense Real-time Model-Checking 

 

Checking the Emptiness 

of Timed Automata 
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Given a TA A it is always possible to check automatically 
if it accepts some timed word. 

Outline of the algorithm: 

 Assume that clock constraints involve integer constants only 

 Define an equivalence relation over extended states (location + clocks) 

 All extended states in the same equivalence class are equivalent 
w.r.t. satisfaction of clock constraints 

 The equivalence relation is such that there is a finite number 
of equivalence classes for any given TA 

 Given a TA A, build an FSA reg(A) – the “region automaton”: 

the states of reg(A) represent the equivalence classes of 
the extended states of any run of of A 

the edges of reg(A) represent evolution of any extended state 
within the equivalence class over any run of A 

 Checking the emptiness of reg(A) is equivalent to checking A’s emptiness 

TA-Emptiness 
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Integer vs. Rational vs. Irrational 

The domain for time is R≥0 

What about the domain for time constraints? 

constants in clock constraints of TAs  (e.g.: x < k) 

1. Same as the domain for time: R≥0 

 x < π 

 emptiness becomes undecidable! 

2. Discrete time domain: integers Z 

 e.g.:   x < 5 

 emptiness fully decidable (see algorithm next) 

3. Dense but not continuous: rationals Q≥0 

 x < 1/3 

 emptiness is reducible to the discrete case 
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Integer vs. Rational 

Dense but not continuous: rationals Q≥0 

 Let A be a TA with rational constants 

 let m be the least common multiple of denominators of all 
constants appearing in the clock constraints of A 

 let A*m be the TA obtained from A by multiplying every 
constants in the clock constraints by m 

 A*m has only integers constants in its clock constraints 

 A accepts any timed word 
   [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] 
iff A*m accepts the “scaled” timed word 
  [σ(1), m*t(1)] [σ(2), m*t(2)] ... [σ(n), m*t(n)] 

 Hence checking the emptiness of A*m is equivalent to checking 
the emptiness of A 
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Equivalence Relation over Extended States 

Let us fix a TA A = [Σ, S, C, I, E, F] with C = [x(1), ..., x(n)] 

 For any clock x(i) in C let M(i) be the largest constant involving 
clock x(i) in any clock constraint in E 

 Let [v(1), ..., v(n)] ∈ R≥0
n denote a “clock evaluation” representing 

any assignment of values to clocks 

 Equivalence of two clock evaluations: 
[v(1), ..., v(n)] ~ [v'(1), ..., v'(n)]   iff    all of the following hold: 

1. For all 1 ≤ i ≤ n: int(v(i)) = int(v'(i))   or v(i), v'(i) > M(i) 

2. For all 1 ≤ i,j ≤ n such that v(i) ≤ M(i) and v(j) ≤ M(j): 
  frac(v(i)) ≤ frac(v(j))   iff   frac(v'(i)) ≤ frac(v'(j)) 

3. For all 1 ≤ i ≤ n such that v(i) ≤ M(i): 
  frac(v(i)) = 0     iff    frac(v'(i)) = 0 

 
Note: int(x) is the integer part of x;  
  frac(x) is the fractional part of x 

For example:    int(3.12) = 3    frac(3.12) = 0.12 



53 

Clock Regions 

 For a clock evaluation v = [v(1), ..., v(n)] ∈ R≥0n, 
[[v]] denotes the clock region v belongs to 

 As a consequence of the definition of ~, any clock 
region can be uniquely characterized by a finite set of 
constraints on clocks 

 v = [0.4;  0.9;  0.7; 0]  for 4 clocks w, x, y, z 

 [[v]]   is   z = 0 < w < y < x < 1 

 Fact: clock regions are always in finite number 

Def. A clock region is an equivalence class 

of clock evaluations induced by the equivalence relation ~ 
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Clock Regions (cont'd) 

More systematically: 

 given a set of clocks C = [x(1), ..., x(n)] 

 with M(i) the largest constant appearing  
in constraints on clock x(i) 

a clock region is uniquely characterized by 

 For each clock x(i) a constraint in the form: 

x(i) = c  with c = 0, 1, ..., M(i); or 

c – 1 < x(i) < c with c = 1, ..., M(i); or 

x(i) > M(i) 

 For each pair of clocks x(i), x(j) a constraint in the form 

frac(x(i)) < frac(x(j)) 

frac(x(i)) = frac(x(j)) 

frac(x(i)) > frac(x(j)) 

(These are unnecessary if x(i) = c, x(j) = c, x(i) > M(i), or x(j) > M(j) ) 
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Clock Regions: Example 

 Clocks C = [x, y] 

 M(x) = 2;  M(y) = 3 

 All 60 possible clock regions: 

 12 corner points 

 30 open line segments 

 18 open regions 
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Time-successors of Regions 

Fact: a clock evaluation v satisfies a clock constraint c iff every 
other clock evaluation in [[v]] satisfies c 

Hence, we can say that a “clock region satisfies a clock constraint” 

Given a clock region R it is always possible to compute all other 
clock regions that can be reached from R by letting time pass  

(i.e., without resetting any clock) 

Graphically: 

 the time-successors of a region R are the regions that can be 
 reached by moving along a line parallel to the diagonal in the 
 upward direction, starting from any point in R 

( For a formal definition see e.g.: Alur & Dill, 1994 ) 

Def. The time successor time-succ(R) of a clock region R is the set 
of all clock regions (including R itself) that can be reached from R 

by letting time pass (i.e., without resetting any clock). 
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Time-successors of Regions: Example 

Graphically: the time-successors of a region R are the regions that can be 

reached by moving along a line parallel to the diagonal in the upward direction, 

starting from any point in R 

Example: 

 successors of region 
2 < y < 3; 1 < x < y-1 
(other than the region itself): 

 y > 3; 1 < x < 2 

 y > 3; x = 2 

 y = 3; 1 < x < 2 

 y > 3; x > 2 

 successors of region 
y = 2; x = 2 (other than the 
region itself): 

 2 < y < 3; x > 2 

 ... 
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Region Automaton Construction 

For a timed automaton A it is always possible to build an FSA 

reg(A) (the “region automaton” of A) such that: 

⟨A⟩ = ∅  iff  ⟨reg(A)⟩ = ∅ 

Def.  Given a TA A = [Σ, S, C, I, E, F] its region automaton  

 reg(A) ≜ [Σ, rS, rI, rE, rF] is defined as: 

 rS ≜ { (s, r) |  s ∈ S  and r is a clock region } 

 rI ≜ { (s, [[0, 0, ..., 0]])  |  s ∈ I } 

the clock region where all clocks are reset to 0 

 rE(σ, [s, r]) ≜ { (s', r') | [s, σ, c, ρ, s'] ∈ E            

 and there exists a region r''∈ time-succ(r)  

  such that  r'' satisfies  c, and r' is obtained 

  from r'' by resetting all clocks in ρ to 0 } 

 rF ≜ { (s, r) | s ∈ F } 
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Region Automaton: Example 
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Dense Real-time Model-Checking 

 

Complexity, Variants, and Tools 
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Complexity of Emptiness Checking for TAs 

 Building the region automaton and checking its 
emptiness takes time exponential in the size of the 
clock constraints 

 Checking emptiness of a TA is a PSPACE-complete 
problem 

 Hence the region-automaton algorithm is worst-
case optimal 

 However, variants of the emptiness checking 
algorithm can achieve better performances in 
practice 

 mostly by using ad hoc data structures and 
symbolic representations of regions that can be 
manipulated efficiently 
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Variants of TA Emptiness Checking 

Variants of the Emptiness Checking Algorithm are typically based 
on more efficient (on average) representations of regions 

 Representatives 

a clock region is represented by a concrete extended state 
that belongs to it 

the concrete state is a “representative” of the region 

if it is suitably chosen, manipulating it is equivalent to 
manipulating the whole region 

 Clock constraints (a.k.a. zones) 

a region is represented symbolically as a Boolean combination of 
clock constraints 

successors are computed symbolically directly on the Boolean 
expression 

 Other equivalence relations (e.g., bisimulation) 

they can produce fewer equivalence classes 
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Tools for the Analysis of TAs 

 Uppaal    (Larsen, Petterson, Yi et al., ~1995) 

 Kronos    (Tripakis, Yovine et al., ~1995) 

 HyTech  (Henzinger et al., ~1994) 

 PHAVer  (Frehse, ~2005) 

 

Remark:  emptiness checking is also called 

       “reachability analysis” 

the language of a TA A is empty iff the accepting 

states of A cannot be reached in any computation 
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Dense Real-time Model-Checking 

 

Getting Decidability Back 
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Decidable Dense Real-time MC 

Model checking is undecidable over dense-time infinite words 
for TAs and MTL formulas 
 
As usual, we can trade-off some expressiveness in exchange 
for decidability. 
 
In particular, not mutually exclusively: 

 Syntactic restrictions: use a real-time temporal logic with 
less expressiveness 

 Semantic restrictions: restrict (the density of) the time 
domain in some way 

discretization 

finite words 

bounded variability 

bounded time 
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Reducing the Expressiveness of MTL 

There exist different real-time temporal logics for which 
dense-time model checking is decidable. 
 

Some examples: 

 Strict subsets of MTL: 

MITL: MTL without punctual (i.e., singleton) intervals 
(Alur, Henzinger; Hirshfeld, Rabinovich et al.) 

BMTL, SMTL, ... 
(Ouaknine, Worrell et al.) 

 

 Branching-time real-time logics: 

TCTL    
(Henzinger, Nicollin, Sifakis, Yovine, et al.) 
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Discretization of Dense Real-time M-C 

Build approximations of TAs and MTL dense-time 
semantics over discrete time, such that some results of 
the discrete-time analysis apply to the dense-time 
semantics as well. 
 

In general these approaches are incomplete, that is they 
can't be applied to certain classes of formulas or they 
ignore certain classes of dense timed word. 
 

 Digitization (Henzinger, Manna, Pnueli, 1992) 

 Sampling (F., 2006) 
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Restrict the Semantics to Finite Words 

Real-time model-checking of TAs and MTL is 
undecidable for infinite timed words 

infinite sequences of timestamped input symbols 

 
It is decidable for finite words 
(which we used in formally defining the 
semantics) 
 
This result came somewhat unexpectedly in 
~2005 (Ouaknine & Worrell) and it contradicted 
the “folk belief” that the undecidability for 
infinite words carries over to finite words 
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Restrict the Semantics to Finite Words 

There are various reasons, however, that lessen the 
practical (and didactical) relevance of this 
decidability result. Mainly: 

 While decidable, the problem has non-primitive 
recursive complexity 

as complex as a computable function can be! 

 The (current) algorithm for decidability is 
nontrivial and difficult to present concisely 

it uses techniques different than the region 
automaton construction for TAs 

no efficient symbolic techniques have been 
developed yet 
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Bounded Variability and Time 

Other semantic restrictions to dense time that 

makes that model-checking problem decidable 

(over infinite time as well) 

 Bounded variability: 

“at most k events can occur within a time unit” 

Wilke, 1994;  F., 2008 

 Bounded time: 

“time only goes up to B” 

Ouaknine, Rabinovich, Worrell, 2009 
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Dense Real-time Model-Checking 

 

Other Models for Real-time 
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Other Models for Real-time 

Research and practice in real-time systems has a wide 
spectrum and heterogeneous concerns 
 
There exist many different models that go beyond the 
model-checking paradigm 
 
Let us briefly consider two of them: 

 Timed Petri nets: another concurrency model 

 TRIO (and others): very expressive real-time temporal logics 

 

Further reading: 
F. et al. “Modeling time in computing”, Springer 2012 
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Timed Petri Nets (in a slide) 

Petri Nets (PN) are a popular model for concurrency. 

Many variants are available, including (real-)timed ones. 

 PNs and timed PNs pre-date TAs but are less common 
in automated verification 

 More suitable for “natural” modeling of asynchrony 

 

 Places store tokens 

 Transitions fire, moving tokens around 

 Time bounds on the firing time of transitions 
 

Model of the microwave oven 
(not equivalent to the TA models we’ve seen) 
 
Bounded Petri nets: bound on the maximum number of 
tokens that can be in any place in any run 

 Essentially equivalent to TAs in expressiveness 
(with some semantic subtleties) 
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Full-fledged Real-time Temporal Logics 

Another, quite different, approach to real-time modeling and analysis 
uses very expressive first- (or even higher-) order temporal logic to 
formalize any aspect of the system under analysis. 
 

Example: the TRIO temporal logic, which includes: 

 a core real-time temporal logic with real-time temporal operators 

 first-order quantification and arithmetic 

 object-oriented constructs 

 higher-order extensions 
 

Usage: 

partial requirements (and formal documentation) 

semi-automated analysis 

development by refinement 

... 


