
Chair of Software Engineering

Software Verification

Verification of

Real-time Systems

Carlo A. Furia

2

Program Verification: the very idea

max (a, b: INTEGER): INTEGER

 do

 if a > b then

 Result := a

 else

 Result := b

 end

 end

 require

 true

 ensure

 Result >= a

 Result >= b

P: a program S: a specification

Does P ⊧ S hold?

The Program Verification problem:

 Given: a program P and a specification S

 Determine: if every execution of P, for every value of input parameters,
satisfies S

3

Real-time Verification

max (a, b: INTEGER): INTEGER

 do

 if a > b then

 Result := a

 else

 Result := b

 end

 end

 ensure

 Result >= a

 Result >= b

 ensure -- real-time

 “max terminates no sooner

 than 3 ms and no later than

 10 ms after invocation”

P: a program S: a specification

Does P ⊧ S hold?

The Real-time Verification problem:

 Given: program P (embedded in environment E)
 and real-time specification S

 Determine: if every execution of P (within E) satisfies S

4

Real-time Programs and Systems

 The timing of a piece of software is usually dependent on the
environment where the computation takes place

 Hence, in real-time verification the focus shifts from programs to
(software-intensive) systems

 The purely computational aspects can often be analyzed in isolation

 Real-time verification can then focus on real-time aspects of the
system

e.g., synchronization, deadlines, delays, ...

 while abstracting away most of the rest

Def. Real-time specification: specification that includes
exact timing information.

Def. Real-time computation: computation whose
specification is real-time. In other words: computation
whose correctness depends not only on the value of the
result but also on when the result is available.

5

Decidability vs. Expressiveness Trade-Off

 The classes of F(P) and N(S) should guarantee:

enough expressiveness to include a quantitative notion
of time

decidability of the verification problem

The Real-time Verification problem:

 Given: program P (embedded in environment E) and real-time
specification S

 Determine: if every execution of P (within E) satisfies S

Does F(P) ⊧ N(S) hold?

P: a system S: a real-time specification

F(P): formal model of P N(S): formal annotation for S
⇕ ⇕

6

Real-time Model-Checking

A: a timed automaton F: a metric temporal-logic formula A ⊧ F

The Real-time Model Checking problem:

 Given: a timed automaton A
 and a metric temporal-logic formula F

 Determine: if every run of A satisfies F or not

if not, also provide a counterexample:
a run of A where F does not hold

 The model-checking paradigm is naturally extended to real-time systems

 Different choices are possible for the family of automata and of formulae

 Linear time is the standard option for real-time (as opposed to branching time)

 A different attribute of time that becomes relevant in quantitative models is
discrete vs. dense time

?

7

Discrete vs. dense (continuous) time

Discrete time

 sequence of isolated “steps”

 every instant has a unique
successor

 e.g.: the naturals N = {0, 1, 2, ...}

+ simple and intuitive

+ verification usually decidable
(and acceptably complex)

+ robust and elegant theoretical
framework

cannot model true asynchrony

unsuitable to model physical
variables

Dense (or continuous) time

 arbitrarily small distances

 the successor of an instant is
not defined

 e.g.: the reals R

+ can model true asynchrony

+ accurate modeling of
physical variables

tricky to understand

verification often
undecidable (or highly
complex)

lacks a unifying framework

8

Discrete Real-time Model-Checking

Timed Automata and

Metric Temporal Logic

9

Discrete Real-time Model-Checking

A: a discrete TA F: an MTL formula A ⊧ F

The Discrete Real-time Model Checking problem:

 Given: a discrete TA A and an MTL formula F

 Determine: if every run of A satisfies F or not

if not, also provide a counterexample: a run of A where F
does not hold

?

Discrete real-time model checking extends standard
“untimed” model checking straightforwardly:

 Discrete Timed Automata (TA) extend the Finite-State
Automata (FSA)

 Metric Temporal Logic (MTL) extends Linear Temporal
Logic (LTL)

10

Timed Automata: Syntax

11

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA)
 A tuple [Σ, S, C, I, E, F]:

 Σ: finite nonempty (input) alphabet

 S: finite nonempty set of locations
(i.e., discrete states)

 C: finite set of clocks

 I, F: set of initial/final states

 E: finite set of edges [s, σ, c, ρ, s']

s ∈ S: source location

s' ∈ S: target location

σ ∈ Σ: input character (also “label”)

c: clock constraint in the form:
 c ::= x ≈ k | ¬ c | c1 ∧ c2

 x, y ∈ C are clocks

 k ∈ N is an integer constant

 ≈ is a comparison operator among <, ≤, >, ≥, =

ρ ⊆ C: set of clock that are reset (to 0)

12

Timed Automata: Semantics

Accepting run:

r = [off, (x=0, y=0)]
 [on, (x=0, y=3)]
 [cooking, (x=8, y=0)]
 [on, (x=81, y=73)]
 [off, (x=85, y=77)]

Over input timed word:
w = [turn_on, 3]
 [start, 11]
 [stop, 84]
 [turn_off, 88]

13

Timed Automata: Semantics

Def. An accepting run of a TA A=[Σ, S, C, I, E, F]

over input timed word w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ x N)* is a

sequence r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)]

 ∈ (S x N|C|)* of (extended) states such that:

it starts from an initial and ends in an accepting state: s(0) ∈ I, s(n) ∈ F

initially all clocks are reset to 0: v(0,k) = 0 for all 1 ≤ k ≤ |C|

for every transition (0 ≤ i < n):
 [s(i) v(i,1) ... v(i,|C|)] --> [s(i+1) v(i+1,1) ... v(i+1,|C|)]
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed:

 the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i))
satisfy the constraint c

 v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i)

Def. A timed word w = w(1) w(2) ... w(n) ∈ (Σ x N)* is a sequence
 of pairs [σ(i), t(i)] such that:

the sequence of timestamps t(1), t(2), ..., t(n) is increasing

[σ(i), t(i)] represents the i-th character σ(i) read at time t(i)

14

Timed Automata: Semantics

Def. Any TA A=[Σ, S, C, I, E, F] defines
 a set of input timed words ⟨A⟩:
 ⟨A⟩ ≜ { w ∈ (Σ x N)* | there is
 an accepting run of A
 over w }

 ⟨A⟩ is called the language of A

With regular expressions and arithmetic:

⟨A⟩ = ([turn_on, t1]

 ([start, t2] [stop, t3])*

 [turn_off, t4])*

 with t3-t2 ≤ 300 and t4-t1 > 1

15

Metric (Linear) Temporal Logic

<>[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded)

time units in the future”

 [any, t ≤ 1]* [stop, 2] [stop, 3] [any, 4] [any, 7] ...

 [any, t < 3]* [stop, 3] [any, 4] [any, t > 4] ...

[](2,4] start

“start holds between 2 (excluded) and 4 (included) time units in the future”

 [any, 0] [any, 1] [any, 2] [start, 3] [start, 4] [any, t > 4]*

 [any, 0] [any, 1] [any, 2] [start, 3] [any, t > 4]*

 [stop, 0] [stop, 1]

16

Metric (Linear) Temporal Logic

[] (start ⇒ <>(3,10] stop)

“every occurrence of start is followed by an occurrence

of stop between 3 (excluded) and 10 (included) time

units in the future”

cook U(3,10] stop

“stop occurs between 3 (excluded) and 10 (included) time

units in the future, and cook holds until then”

17

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae:

 F ::= p | ¬ F | F ∧ G | F U<a,b> G

with p ∈ P any atomic proposition and <a,b> an interval of

the time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

 next: X F ≜ True U[1,1] F

 bounded until: F U<a,b> G

 bounded eventually: <><a,b> F ≜ True U<a,b> F

 bounded always: []<a,b> F ≜ ¬ <><a,b> ¬F

 intervals can be unbounded; e.g., [3, ∞)

 intervals with pseudo-arithmetic expressions; e.g.:

 ≥ 3 for [3, ∞)

 = 1 for [1,1]

 [0, ∞) is simply omitted

18

Metric Temporal Logic: Semantics

Def. A timed word w = [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P x N)*
satisfies LTL formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when:

w, i ⊧ p iff p = σ(i)

w, i ⊧ ¬ F iff w, i ⊧ F does not hold

w, i ⊧ F ∧ G iff both w, i ⊧ F and w, i ⊧ G hold

w, i ⊧ F U<a,b> G iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F

 i.e., F holds until G will hold within <a, b>

For derived operators:

w, i ⊧ <><a,b> F iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ F

 i.e., F holds eventually within <a,b>

w, i ⊧ []<a,b> F iff for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ F

 i.e., F holds always within <a,b>

19

Metric Temporal Logic: Semantics

Def. Satisfaction:
 w ⊧ F ≜ w, 1 ⊧ F

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words ⟨F⟩:
 ⟨F⟩ ≜ { w ∈ (P x N)* | w ⊧ F }

 ⟨F⟩ is called the language of F

20

Discrete Real-time Model-Checking

From Real-time to Untimed

Model-Checking

21

Discrete-time Real-time Model Checking

An semantic view of the Real-time Model Checking problem:

Given: a timed automaton A and an MTL formula F

 if ⟨A⟩ ∩ ⟨¬ F⟩ is empty then every run of A satisfies F

 if ⟨A⟩ ∩ ⟨¬ F⟩ is not empty then some run of A does not satisfy F

any member of the nonempty intersection ⟨A⟩ ∩ ⟨¬ F⟩ is a counterexample

How to check ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ algorithmically (given A, F)?

For a discrete time domain we can reduce real-time model

checking to (untimed) model-checking:

 Transform timed automaton A into finite-state

automaton A'

 Transform MTL formula F into LTL formula F'

 ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ iff ⟨A'⟩ ∩ ⟨¬ F'⟩ = ∅

 Re-use standard model-checking algorithms

22

Reduce discrete-time TAs to FSAs

Use states of an FSA to “count” discrete time

steps according to the semantics of the TA

 transitions with special

events τ are time steps

without events.

 on0 represents location

on with clock x = 0

 on≥1 represents location

on with clock x ≥ 1

23

Reduce discrete-time MTL to LTL

Use next operator X to “count” discrete time
steps according to the semantics of the MTL
formula

<>[1,3] p becomes Xp ∨ XXp ∨ XXXp

 More compactly X(p ∨ X(p ∨ Xp))

[]≥5 p becomes X5 [](p ∨ τ)

 X5p is a shorthand for XXXXXp

 The disjunction is needed because we may have
time increments without events

The encoding for bounded until is a bit more
complicated but not different in principle

24

Discrete-time Real-time MC: Complexity

There is an exponential blow-up in complexity when
switching from (untimed) linear-time model
checking to discrete-time real-time model
checking:

 Discrete-time real-time MTL model checking:
EXPSPACE-complete

in practice: double-exponential time

 LTL model checking: PSPACE-complete

in practice: singly-exponential time

 The blow up occurs only if the constants (in timed
automata and MTL formulas) are encoded succinctly in
binary

blow-up due to the “unrolling” of binary constants as FSA
states or nested next operators

25

Dense Real-time Model-Checking

Timed Automata and

Metric Temporal Logic

26

Dense Real-time Model-Checking

Dense real-time model checking considers the same model as
discrete real-time model checking but with R≥0 as time
domain:

 A dense Timed Automaton (TA) models the system

 Dense-time Metric Temporal Logic (MTL) models the
property

 The syntax of TA and MTL need not be changed for dense time

with the possible exception of allowing fractional time bounds

 The semantics of TA and MTL is also unchanged except that:

 R≥0 replaces N as time domain

 As we did with untimed model checking, we will use finite-word
models for automata and logic.

 Unlike in untimed model checking, this choice affects some results.
(We will mention some details only later for simplicity.)

27

Dense Real-time Model-Checking

A: a TA F: an MTL formula A ⊧ F

The Dense Real-time Model Checking problem:

 Given: a dense TA A and an MTL formula F

 Determine: if every run of A satisfies F or not

if not, provide a counterexample: a run of A where F does not hold

?

Dense real-time model checking extends standard
“untimed” model checking:

 Timed Automata (TA) extend Finite-State Automata
(FSA)

 Metric Temporal Logic (MTL) extends Linear Temporal
Logic (LTL)

28

Timed Automata: Syntax

29

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA):
 a tuple [Σ, S, C, I, E, F]:

 Σ: finite nonempty (input) alphabet

 S: finite nonempty set of locations
(i.e., discrete states)

 C: finite set of clocks

 I, F: set of initial/final states

 E: finite set of edges [s, σ, c, ρ, s']

s ∈ S: source location

s' ∈ S: target location

σ ∈ Σ: input character (also “label”)

c: clock constraint in the form:
c ::= x ≈ k | ¬ c | c1 ∧ c2

 x, y ∈ C are clocks

 k ∈ N is an integer constant

 ≈ is a comparison operator among <, ≤, >, ≥, =

ρ ⊆ C: set of clock that are reset (to 0)

30

Timed Automata: Semantics

Accepting run:

r = [off, (x=0, y=0)]
 [on, (x=0, y=3.2)]
 [cooking, (x=8.5, y=0)]
 [on, (x=81.7, y=73.2)]
 [off, (x=84.91, y=76.41)]

Over input timed word:

w = [turn_on, 3.2]
 [start, 11.7]
 [stop, 84.9]
 [turn_off, 88.11]

31

Timed Automata: Semantics

Def. An accepting run of a TA A=[Σ, S, C, I, E, F] over input timed word
 w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ x R)* is a sequence
 r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)] ∈ (S x R|C|)*
 of (extended) states such that:

it starts from an initial and ends in an accepting state: s(0) ∈ I, s(n) ∈ F

initially all clocks are reset to 0: v(0,k) = 0 for all 1 ≤ k ≤ |C|

for every transition (0 ≤ i < n):
 [s(i) v(i,1) ... v(i,|C|)] --> [s(i+1) v(i+1,1) ... v(i+1,|C|)]
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed:

 the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i))
satisfy the constraint c

 v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i)

Def. A timed word w = w(1) w(2) ... w(n) ∈ (Σ x R)* is a sequence
 of pairs [σ(i), t(i)] such that:

the sequence of timestamps t(1), t(2), ..., t(n) is increasing

[σ(i), t(i)] represents the i-th character σ(i) read at time t(i)

32

Timed Automata: Semantics

Def. Any TA A=[Σ, S, C, I, E, F] defines

 a set of input timed words ⟨A⟩:

 ⟨A⟩ ≜ { w ∈ (Σ x R)* | there is an

 accepting run of A over w }

 ⟨A⟩ is called the language of A

With regular expressions and arithmetic:

⟨A⟩ = ([turn_on, t1]

 ([start, t2] [stop, t3])*

 [turn_off, t4])*

 with t3-t2 ≤ 300 and t4-t1 > 1

33

Metric (Linear) Temporal Logic

<>[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded) time

units in the future”

 [any, t < 2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ...

 [any, t < 3.99]* [stop, 3.99] [any, 4] [any, t > 4] ...

[](2,4] start

“start holds between 2 (excluded) and 4 (included) time units in the future”

 [any, t ≤ 2] [start, 2.2] [start, 3] [start, 4] [any, t > 4] ...

 [any, t ≤ 2] [start, 4] [any, t > 4] ...

 [stop, 0] [stop, 0.3] [stop, 0.7]

34

Metric (Linear) Temporal Logic

[] (start ⇒ <>(3,10] stop)

“every occurrence of start is followed by an occurrence

of stop between 3 (excluded) and 10 (included) time

units in the future”

cook U(3,10] stop

“stop occurs between 3 (excluded) and 10 (included) time

units in the future, and cook holds until then”

35

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae:

 F ::= p | ¬ F | F ∧ G | F U<a,b> G

with p ∈ P any atomic proposition and <a,b> an interval of

the time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

 next: X F ≜ True U[1,1] F

 bounded until: F U<a,b> G

 bounded eventually: <><a,b> F ≜ True U<a,b> F

 bounded always: []<a,b> F ≜ ¬ <><a,b> ¬F

 intervals can be unbounded; e.g., [3, ∞)

 intervals with pseudo-arithmetic expressions; e.g.:

 ≥ 3 for [3, ∞)

 = 1 for [1,1]

 [0, ∞) is simply omitted

36

Metric Temporal Logic: Semantics

Def. A timed word w = [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P x R)*
satisfies LTL formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when:

w, i ⊧ p iff p = σ(i)

w, i ⊧ ¬ F iff w, i ⊧ F does not hold

w, i ⊧ F ∧ G iff both w, i ⊧ F and w, i ⊧ G hold

w, i ⊧ F U<a,b> G iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F

 i.e., F holds until G will hold within <a, b>

For derived operators:

w, i ⊧ <><a,b> F iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ F

 i.e., F holds eventually within <a,b>

w, i ⊧ []<a,b> F iff for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ F

 i.e., F holds always within <a,b>

37

Metric Temporal Logic: Semantics

Def. Satisfaction:
 w ⊧ F ≜ w, 1 ⊧ F

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words ⟨F⟩:
 ⟨F⟩ ≜ { w ∈ (P x R)* | w ⊧ F }

 ⟨F⟩ is called the language of F

38

Dense Real-time Model-Checking

What's Decidable?

39

Automata-theoretic real-time model-checking?

Let's try to extend the automata-theoretic model

checking paradigm to real-time.

Its three algorithmic components:

 MTL2TA: given MTL formula F build TA

a(F) such that ⟨F⟩ = ⟨a(F)⟩

 TA-Intersection: given TAs A, B build

TA C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩

 TA-Emptiness: given TA A check whether

⟨A⟩ = ∅ is the case

Which of these algorithms are feasible over real-time?

40

TAs not Closed under Complement

A: a dense TA F: a dense-time MTL formula A ⊧ F
?

Fundamental problem:

Dense timed automata are not closed under

complement

The complement of the language

of this TA isn't accepted by any TA:

 language of this TA:

“there exist two p's separated by one t.u.”

 complement language:

“no two p's are separated by one t.u.”

 intuition: need a clock for each p within

the past time unit, but there can be an

unbounded number of such p's because time is dense

41

TAs not Closed under Complement

Fundamental problem:

 Dense TAs are not closed under complement

 MTL is clearly closed under complement

Language of the TA: <> (p ∧ <>=1 p)

Complement language of the TA:

¬ <> (p ∧ <>=1 p) = [] (p ⇒ ¬ <>=1 p)

 Hence, automata-theoretic dense

real-time model-checking

is unfeasible (in general)

42

Dense MTL Model Checking is Undecidable

An even more fundamental problem:

The dense-time model-checking problem for MTL
and TAs is undecidable (for infinite words)

no approach is going to work, not just
the automata-theoretic one

MTL and TAs are “too expressive” over dense time

43

What's Decidable about Timed Automata

Let's revisit the three algorithmic components of
automata-theoretic model checking:

 MTL2TA: given MTL formula F build TA
a(F) such that ⟨F⟩ = ⟨a(F)⟩
 undecidable problem*

 TA-Intersection: given TAs A, B build
TA C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩
 decidable

 TA-Emptiness: given TA A check whether
⟨A⟩ = ∅ is the case
 decidable!

*(for infinite words: see clarification later)

44

Dense Real-time Model-Checking

Intersection of Timed Automata

45

Given TAs A, B it is always possible to build automatically a TA

C that accepts precisely the words that both A and B accept.

TA C represents all possible parallel runs of A and B where a timed

word is accepted if and only if both A and B would accept it. The

construction is called “product automaton”.

TA-Intersection: running TAs in parallel

46

TA-Intersection: Example

x =

47

Def. Given TAs A=[Σ, SA, CA, IA, EA, FA] and B=[Σ, SB, CB, IB, EB, FB]
 let C ≜ A x B ≜ [Σ, SC, CC, IC, EC, FC] be defined as:

 SC ≜ SA x SB

 CC ≜ CA ∪ CB (assuming w.l.o.g. that they are disjoint sets)

 IC ≜ { (s, t) | s ∈ IA and t ∈ IB }

 [(s, t), σ, cA ∧ cB, ρA ∪ ρB, (s', t')] ∈ EC iff
 [s, σ, cA, ρA, s'] ∈ EA and [t, σ, cB, ρB, t']∈ EB

 FC ≜ { (s, t) | s ∈ FA and t ∈ FB }

Theorem.

⟨A x B⟩

=

⟨A⟩ ∩ ⟨B⟩

TA-Intersection: running TAs in parallel

48

Dense Real-time Model-Checking

Checking the Emptiness

of Timed Automata

49

Given a TA A it is always possible to check automatically
if it accepts some timed word.

Outline of the algorithm:

 Assume that clock constraints involve integer constants only

 Define an equivalence relation over extended states (location + clocks)

 All extended states in the same equivalence class are equivalent
w.r.t. satisfaction of clock constraints

 The equivalence relation is such that there is a finite number
of equivalence classes for any given TA

 Given a TA A, build an FSA reg(A) – the “region automaton”:

the states of reg(A) represent the equivalence classes of
the extended states of any run of of A

the edges of reg(A) represent evolution of any extended state
within the equivalence class over any run of A

 Checking the emptiness of reg(A) is equivalent to checking A’s emptiness

TA-Emptiness

50

Integer vs. Rational vs. Irrational

The domain for time is R≥0

What about the domain for time constraints?

constants in clock constraints of TAs (e.g.: x < k)

1. Same as the domain for time: R≥0

 x < π

 emptiness becomes undecidable!

2. Discrete time domain: integers Z

 e.g.: x < 5

 emptiness fully decidable (see algorithm next)

3. Dense but not continuous: rationals Q≥0

 x < 1/3

 emptiness is reducible to the discrete case

51

Integer vs. Rational

Dense but not continuous: rationals Q≥0

 Let A be a TA with rational constants

 let m be the least common multiple of denominators of all
constants appearing in the clock constraints of A

 let A*m be the TA obtained from A by multiplying every
constants in the clock constraints by m

 A*m has only integers constants in its clock constraints

 A accepts any timed word
 [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)]
iff A*m accepts the “scaled” timed word
 [σ(1), m*t(1)] [σ(2), m*t(2)] ... [σ(n), m*t(n)]

 Hence checking the emptiness of A*m is equivalent to checking
the emptiness of A

52

Equivalence Relation over Extended States

Let us fix a TA A = [Σ, S, C, I, E, F] with C = [x(1), ..., x(n)]

 For any clock x(i) in C let M(i) be the largest constant involving
clock x(i) in any clock constraint in E

 Let [v(1), ..., v(n)] ∈ R≥0
n denote a “clock evaluation” representing

any assignment of values to clocks

 Equivalence of two clock evaluations:
[v(1), ..., v(n)] ~ [v'(1), ..., v'(n)] iff all of the following hold:

1. For all 1 ≤ i ≤ n: int(v(i)) = int(v'(i)) or v(i), v'(i) > M(i)

2. For all 1 ≤ i,j ≤ n such that v(i) ≤ M(i) and v(j) ≤ M(j):
 frac(v(i)) ≤ frac(v(j)) iff frac(v'(i)) ≤ frac(v'(j))

3. For all 1 ≤ i ≤ n such that v(i) ≤ M(i):
 frac(v(i)) = 0 iff frac(v'(i)) = 0

Note: int(x) is the integer part of x;
 frac(x) is the fractional part of x

For example: int(3.12) = 3 frac(3.12) = 0.12

53

Clock Regions

 For a clock evaluation v = [v(1), ..., v(n)] ∈ R≥0n,
[[v]] denotes the clock region v belongs to

 As a consequence of the definition of ~, any clock
region can be uniquely characterized by a finite set of
constraints on clocks

 v = [0.4; 0.9; 0.7; 0] for 4 clocks w, x, y, z

 [[v]] is z = 0 < w < y < x < 1

 Fact: clock regions are always in finite number

Def. A clock region is an equivalence class

of clock evaluations induced by the equivalence relation ~

54

Clock Regions (cont'd)

More systematically:

 given a set of clocks C = [x(1), ..., x(n)]

 with M(i) the largest constant appearing
in constraints on clock x(i)

a clock region is uniquely characterized by

 For each clock x(i) a constraint in the form:

x(i) = c with c = 0, 1, ..., M(i); or

c – 1 < x(i) < c with c = 1, ..., M(i); or

x(i) > M(i)

 For each pair of clocks x(i), x(j) a constraint in the form

frac(x(i)) < frac(x(j))

frac(x(i)) = frac(x(j))

frac(x(i)) > frac(x(j))

(These are unnecessary if x(i) = c, x(j) = c, x(i) > M(i), or x(j) > M(j))

55

Clock Regions: Example

 Clocks C = [x, y]

 M(x) = 2; M(y) = 3

 All 60 possible clock regions:

 12 corner points

 30 open line segments

 18 open regions

56

Time-successors of Regions

Fact: a clock evaluation v satisfies a clock constraint c iff every
other clock evaluation in [[v]] satisfies c

Hence, we can say that a “clock region satisfies a clock constraint”

Given a clock region R it is always possible to compute all other
clock regions that can be reached from R by letting time pass

(i.e., without resetting any clock)

Graphically:

 the time-successors of a region R are the regions that can be
 reached by moving along a line parallel to the diagonal in the
 upward direction, starting from any point in R

(For a formal definition see e.g.: Alur & Dill, 1994)

Def. The time successor time-succ(R) of a clock region R is the set
of all clock regions (including R itself) that can be reached from R

by letting time pass (i.e., without resetting any clock).

57

Time-successors of Regions: Example

Graphically: the time-successors of a region R are the regions that can be

reached by moving along a line parallel to the diagonal in the upward direction,

starting from any point in R

Example:

 successors of region
2 < y < 3; 1 < x < y-1
(other than the region itself):

 y > 3; 1 < x < 2

 y > 3; x = 2

 y = 3; 1 < x < 2

 y > 3; x > 2

 successors of region
y = 2; x = 2 (other than the
region itself):

 2 < y < 3; x > 2

 ...

58

Region Automaton Construction

For a timed automaton A it is always possible to build an FSA

reg(A) (the “region automaton” of A) such that:

⟨A⟩ = ∅ iff ⟨reg(A)⟩ = ∅

Def. Given a TA A = [Σ, S, C, I, E, F] its region automaton

 reg(A) ≜ [Σ, rS, rI, rE, rF] is defined as:

 rS ≜ { (s, r) | s ∈ S and r is a clock region }

 rI ≜ { (s, [[0, 0, ..., 0]]) | s ∈ I }

the clock region where all clocks are reset to 0

 rE(σ, [s, r]) ≜ { (s', r') | [s, σ, c, ρ, s'] ∈ E

 and there exists a region r''∈ time-succ(r)

 such that r'' satisfies c, and r' is obtained

 from r'' by resetting all clocks in ρ to 0 }

 rF ≜ { (s, r) | s ∈ F }

59

Region Automaton: Example

60

Dense Real-time Model-Checking

Complexity, Variants, and Tools

61

Complexity of Emptiness Checking for TAs

 Building the region automaton and checking its
emptiness takes time exponential in the size of the
clock constraints

 Checking emptiness of a TA is a PSPACE-complete
problem

 Hence the region-automaton algorithm is worst-
case optimal

 However, variants of the emptiness checking
algorithm can achieve better performances in
practice

 mostly by using ad hoc data structures and
symbolic representations of regions that can be
manipulated efficiently

62

Variants of TA Emptiness Checking

Variants of the Emptiness Checking Algorithm are typically based
on more efficient (on average) representations of regions

 Representatives

a clock region is represented by a concrete extended state
that belongs to it

the concrete state is a “representative” of the region

if it is suitably chosen, manipulating it is equivalent to
manipulating the whole region

 Clock constraints (a.k.a. zones)

a region is represented symbolically as a Boolean combination of
clock constraints

successors are computed symbolically directly on the Boolean
expression

 Other equivalence relations (e.g., bisimulation)

they can produce fewer equivalence classes

63

Tools for the Analysis of TAs

 Uppaal (Larsen, Petterson, Yi et al., ~1995)

 Kronos (Tripakis, Yovine et al., ~1995)

 HyTech (Henzinger et al., ~1994)

 PHAVer (Frehse, ~2005)

Remark: emptiness checking is also called

 “reachability analysis”

the language of a TA A is empty iff the accepting

states of A cannot be reached in any computation

64

Dense Real-time Model-Checking

Getting Decidability Back

65

Decidable Dense Real-time MC

Model checking is undecidable over dense-time infinite words
for TAs and MTL formulas

As usual, we can trade-off some expressiveness in exchange
for decidability.

In particular, not mutually exclusively:

 Syntactic restrictions: use a real-time temporal logic with
less expressiveness

 Semantic restrictions: restrict (the density of) the time
domain in some way

discretization

finite words

bounded variability

bounded time

66

Reducing the Expressiveness of MTL

There exist different real-time temporal logics for which
dense-time model checking is decidable.

Some examples:

 Strict subsets of MTL:

MITL: MTL without punctual (i.e., singleton) intervals
(Alur, Henzinger; Hirshfeld, Rabinovich et al.)

BMTL, SMTL, ...
(Ouaknine, Worrell et al.)

 Branching-time real-time logics:

TCTL
(Henzinger, Nicollin, Sifakis, Yovine, et al.)

67

Discretization of Dense Real-time M-C

Build approximations of TAs and MTL dense-time
semantics over discrete time, such that some results of
the discrete-time analysis apply to the dense-time
semantics as well.

In general these approaches are incomplete, that is they
can't be applied to certain classes of formulas or they
ignore certain classes of dense timed word.

 Digitization (Henzinger, Manna, Pnueli, 1992)

 Sampling (F., 2006)

68

Restrict the Semantics to Finite Words

Real-time model-checking of TAs and MTL is
undecidable for infinite timed words

infinite sequences of timestamped input symbols

It is decidable for finite words
(which we used in formally defining the
semantics)

This result came somewhat unexpectedly in
~2005 (Ouaknine & Worrell) and it contradicted
the “folk belief” that the undecidability for
infinite words carries over to finite words

69

Restrict the Semantics to Finite Words

There are various reasons, however, that lessen the
practical (and didactical) relevance of this
decidability result. Mainly:

 While decidable, the problem has non-primitive
recursive complexity

as complex as a computable function can be!

 The (current) algorithm for decidability is
nontrivial and difficult to present concisely

it uses techniques different than the region
automaton construction for TAs

no efficient symbolic techniques have been
developed yet

70

Bounded Variability and Time

Other semantic restrictions to dense time that

makes that model-checking problem decidable

(over infinite time as well)

 Bounded variability:

“at most k events can occur within a time unit”

Wilke, 1994; F., 2008

 Bounded time:

“time only goes up to B”

Ouaknine, Rabinovich, Worrell, 2009

71

Dense Real-time Model-Checking

Other Models for Real-time

72

Other Models for Real-time

Research and practice in real-time systems has a wide
spectrum and heterogeneous concerns

There exist many different models that go beyond the
model-checking paradigm

Let us briefly consider two of them:

 Timed Petri nets: another concurrency model

 TRIO (and others): very expressive real-time temporal logics

Further reading:
F. et al. “Modeling time in computing”, Springer 2012

73

Timed Petri Nets (in a slide)

Petri Nets (PN) are a popular model for concurrency.

Many variants are available, including (real-)timed ones.

 PNs and timed PNs pre-date TAs but are less common
in automated verification

 More suitable for “natural” modeling of asynchrony

 Places store tokens

 Transitions fire, moving tokens around

 Time bounds on the firing time of transitions

Model of the microwave oven
(not equivalent to the TA models we’ve seen)

Bounded Petri nets: bound on the maximum number of
tokens that can be in any place in any run

 Essentially equivalent to TAs in expressiveness
(with some semantic subtleties)

74

Full-fledged Real-time Temporal Logics

Another, quite different, approach to real-time modeling and analysis
uses very expressive first- (or even higher-) order temporal logic to
formalize any aspect of the system under analysis.

Example: the TRIO temporal logic, which includes:

 a core real-time temporal logic with real-time temporal operators

 first-order quantification and arithmetic

 object-oriented constructs

 higher-order extensions

Usage:

partial requirements (and formal documentation)

semi-automated analysis

development by refinement

...

