
Automatic Testing
of Programs with Contracts

Alexey Kolesnichenko

Chair of Software Engineering

Dec. 3, 2014

Slides are adapted from Yu Pei

Automatic Testing

 Many people worked on the project

 Contributors:

 Andreas Leitner

 Ilinca Ciupa

 Yi Wei

 Alexey Kolesnichenko

 Bertrand Meyer

 Carlo A. Furia

 Chris Poskitt

 Yu Pei

 and many others

2

Design by contract

 Contracts

 Applications

 Specification

 Documentation

 Testing & fixing

3

LINKED_LIST . index_of (v: G; i: INTEGER_32): INTEGER_32
-- Index of `i'-th occurrence of item identical to `v'.
-- 0 if none.

require
positive_occurrences: i > 0

ensure
non_negative_result: Result >= 0

Automatic (random) testing

 Testing

 Input

 Oracle

 AutoTest: Automatic testing programs with contracts

 Precondition of the routine under test as the valid
input filter

 Postcondition of the routine as the oracle

4

The select-prepare-test loop

5

Sample testing process

Select next routine to test

Prepare input objects

Test routine

create {LINKED_LIST [INTEGER]} v1.make

v2 := 1

v1.wipe_out

v4 := v1.has (v3)

v3 := 125

v5 := v1.count

v1.extend (v2)

v1

v2

v3

v4

v5

object pool

Performance evaluation

 Testing results

 Precondition of the routine-under-test is violated

 Invalid test case

 Precondition of the routine-under-test is satisfied

 Postcondition satisfied

 Passing test case

 Postcondition not established

 Failing test case (detected fault)

 Evaluation criteria

 Fault detection rate

 Input space coverage

6

Random+ testing

 Essentials

 Input generation

 Primitive types:
random selection + boundary values

 Reference types:
constructor calls + random selection

 Diversification

 With probability pdiv after each test

 Result

 Find faults in widely used, industrial-grade code

 High fault detection rate in the first a few minutes

7

Select routine C.m

Prepare input objects

Test C.m

Diversify

pdiv

1-pdiv

Adaptive Random Testing

 Essentials

 Maintain a list of objects O used
in testing a routine r

 Select the object with the highest
average distance to O for the next
test of r

 Result

 Takes less time and generated tests, on average by a
factor of 5, to the first fault

8

m

n

m

n

Testing with guided object selection

 Essentials

 Keep track of precondition-
satisfying objects

 Use them with higher
probability

 Results

 56% of the routines that cannot
be tested before are now tested

 10% more faults detected in the
same time

 Routines tested 3.6 times more often

9

LINKED_LIST . remove_right (cursor: CURSOR)

not is_empty

valid_cursor

not after

not last

l1

l1, c1

l2

l2, c2

c1c2

c3 c2

l1 l2 l3

c1 c2 c3
l4

o1 p1 …

object pool

v-pool

Stateful testing

 Essentials

 Object states in Boolean expressions

 before, after, is_empty, i > 0, …

 Infer preconditions from existing tests

 Boolean expressions that always hold as preconditions

 Prepare inputs violating the inferred preconditions

 Select objects in the object pool

 Transit objects using object behavioral model

 Result

 68% more faults detected
with 7% time overhead

10

LINKED_LIST . index_of (v: like item; i: INTEGER_32): INTEGER_32

not is_empty
before

not after
…

forth not is_empty
not before
not after

…

Summary

 Contracts promote automatic testing

 AutoTest

 Preconditions as input filters and postconditions as
oracles

 Project web page:
http://se.inf.ethz.ch/research/autotest/

11

THANKS

20

