
ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

Assignment 2: Challenges of concurrency

ETH Zurich

1 Safety vs. liveness

1.1 Task

Consider the following properties.

1. What goes up must come down.

2. If two or more processes are waiting to enter their critical sections, at least one succeeds.

3. If an interrupt occurs, then a message is printed.

4. The cost of living never decreases.

5. Two things are certain: death and taxes.

6. You can always tell a Harvard man.

For each of the above properties, state whether it is a safety or liveness property. Identify the
bad or good thing of interest.

1.2 Solution

With respect to the order provided in the question, the answers are as follows.

1. This is a liveness property. The good thing to happen is that the thing having gone up is
coming down. Another way to think about this is, “is there a finite witness of a violation
of this property?”. The answer is no, because even if the thing that went up has not come
down yet, it is always possible that it will come down eventually.

2. This is a liveness property. The good thing to happen is that at least one processor
succeeds.

3. This statement is slightly ambiguous. Depending on how one interprets it, it could be
thought of as a safety or liveness property. If the requirement is that a message needs
to be printed immediately after an interrupt has occured, then this is a safety property
because if the message is not printed immediately, then we already have a finite witness of
a violation. However, if the requirement is that eventually a message will be printed, then
this is a liveness property because even if it is not printed yet, it may be printed at some
later point in time. It is quite likely to run into such ambiguities while stating properties
in natural languages. Herein lies the importance of temporal logic, which allows us to
state the properties more clearly.

4. This is a safety property. The “bad” thing to happen would be a decrease in the cost of
living. If the cost of living decreases at some point, then we have a finite witness of a
violation of the property.

1

ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

5. This is a liveness property. The “good” thing to happen is death and taxes. Although one
may not see death or taxes right now, but they may happen at a later point of time.

6. This is a safety property. The “bad” thing that should never happen is one not being able
to tell a Harvard man.

2 LTL Models

2.1 Background

Consider the transition system M over the set of atomic propositions {a, b, c}:

b

s1

a, b

s2

a, c

s3

c

s4

b, c

s5

The following notation is used in the formulae:

G Globally F Future
X Next U Until
→ Implication ∧ Conjunction
∨ Disjunction ¬ Negation

2.2 Task

Decide for each of the following formulae φi in linear-time temporal logic (LTL) whether they
are true in state s1, i.e. whether M, s1 |= φi holds. Justify your answers in each case.

1. φ1 = F Gc

2. φ2 = GF c

3. φ3 = G (X a→ XX ¬a)

4. φ4 = b U (a ∧ c))

5. φ5 = G (c ∧X c→ Gc)

Translate each of the following properties from natural language into LTL.

6. It is never the case that a, b, and c are true at the same time.

7. Infinitely often, a is immediately followed by c.

8. After c is true, b is never true.

2

ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

2.3 Solution

1. No. Consider π = s1, s2, s4, s2, s4,

2. Yes. On all paths starting in s1, c is true infinitely often.

3. Yes. On all paths starting in s1, whenever a is true in the next state, it is false in the one
after that.

4. No. Consider π = s1, s2, s4, s3, s5,

5. Yes. On all paths starting in s1, if c is true twice in a row, it is forever true.

6. φ6 = G¬(a ∧ b ∧ c)

7. φ7 = GF (a ∧X c)

8. φ8 = G (c→ X G¬b)

3 Introduction to Spin

3.1 Background

Model checking is a verification technique that, given the model of a system and a correctness
property, tells us whether the former satisfies the latter.

Spin [1] is a state-of-the-art model checker which can be used for proving the correctness of
concurrent programs. In order to verify a system in Spin, one first needs to model it in a language
called Promela (Process Meta Language). Promela is different from a traditional programming
language in the sense that it has less number of constructs which makes it less expressive. While
this may not be good for implementing a system, it is very efficient in modeling a system at an
abstract level and using a model checker to verify its correctness.

3.2 Installation

The easiest way to install Spin is to download the OS specific precompiled executable from
http://spinroot.com/spin/Bin/index.html. The binary has the version number appended to it.
Rename the binary to spin and put it to your bin folder. If this does not work, you can also find
the instructions for compiling the source at http://spinroot.com/spin/Man/README.html.
There is a GUI for Spin called iSpin. Before you install iSpin, make sure that you have Tcl/Tk
installed (either version 8.4 or 8.5). You can download it from http://www.tcl.tk/. To install
iSpin, you need to download the source. It comes together with the source of Spin which you
can download at http://spinroot.com/spin/Src/index.html. Go to the subdirectory iSpin and
run the script install.sh.

3.3 Tutorial

Here is a brief tutorial explaining the basic Spin functions you will need to know in order to do
the exercises. I assume that you have installed iSpin as explained above.

• To open a Promela model, select Edit/View from the top left corner of the window and
click on open. Browse to the location of your pml file and open it.

• To view the State Machine Diagram of the Promela model, click on Automata View on
right of the window. It will generate an automata for every process in your model and
you can click on the process name to view it.

3

http://spinroot.com/spin/Bin/index.html
http://spinroot.com/spin/Man/README.html
http://www.tcl.tk/
http://spinroot.com/spin/Src/index.html

ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

• To run a simulation of your model, select Simulate/Replay from the menu bar on the top
and click (Re)Run. There are a lot of options on this window but you can leave them to
the defaults.

• To verify your model, select Verification from the top menu bar and click on the Run
button at the top middle part of the window. In this window, there are several options
which let you choose the properties you want to verify. You can leave the options in the
Search Mode section to the defaults.

If the verifier finds an error, an error trail is logged. In such a situation, go back to the
Simulate/Replay option and select the Mode as “Guided, with trail”. The trail file is
generated to indicate at what depth the error occured. Running the simulation with this
setting will generate a counter example which helps you to trace down the cause of the
error.

• Here is the manual for LTL specifications in Spin. Additionally, also refer to the Spin
manual here.

• Note that in Promela, the semicolon is not a statement terminator, but it is a statement
separator. As a result, in all models, the last statement in a set of statements does not
have any “;”. Also note that → is also used to separate two statements. The difference
between “;” and → is that the latter is used to indicate a causal relationship among the
two separating statements.

3.4 Task

In this exercise, you will verify the Dining Philosopher’s problem with Spin. Consider three
philosophers sitting around a table with a bowl of rice in the middle. They can either think or
eat the rice. There are three forks on the table. A philosopher needs two forks for eating the
rice.

• Download the promela model for this system and open it in iSpin.

• Generate the automata for all the processes in the model and run some simulations.

• Verify the model and describe your observations. Was the verification successful? Explain
your observations.

• If the verification was not successful, correct the model and verify it. Justify your approach.

3.5 Solution

The original model was not correct. The verification failed. Upon re-running the simulation
with the trail, it can be seen that there is a deadlock when each of the philosophers picks up the
left fork and keeps waiting for the right one. Refer to the solution code to see how the model
can be corrected and verified to be deadlock free. The correct model ensures that before picking
up the forks, the philosopher checks whether both of them are available or not. If yes, then she
picks them up, first the left then the right, otherwise she waits for both of them to be available.
In the original model, this was not the case. She would pick up the left fork even if the right
one was not free. This would lead to a situation where each philosopher would end up with the
left fork only and the system would not make any progress.

References

[1] http://spinroot.com/spin/whatispin.html

4

http://spinroot.com/spin/Man/ltl.html
http://spinroot.com/spin/Man/Manual.html

	Safety vs. liveness
	Task
	Solution

	LTL Models
	Background
	Task
	Solution

	Introduction to Spin
	Background
	Installation
	Tutorial
	Task
	Solution

