
ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

Assignment 3: Synchronization algorithms

ETH Zurich

1 Proving Mutual Exclusion in Spin

1.1 Background

In last week’s assignment, we introduced the SPIN model checker. In this exercise, you will
learn to SPIN use for proving the correctness of a concurrent algorithm. You can refer to the
manual for LTL specifications in Spin for performing the following task. This exercise is taken
from a tutorial presented on the Fourth Summer School on Formal Techniques [1].

Note: You must specify the LTL property as something that you want the model to satisfy.
For example, if you want a model M to satisfy a property <> []ϕ, then the LTL specification
should look like:
ltl property name {<> []ϕ}

In case M does not satisfy property name, Spin will find a counter example satisfying the
negation of property name.

1.2 Task

Prove/disprove the correctness of an implementation of Dijkstra’s mutual exclusion algorithm
with the help of LTL specifications. The promela model of the algorithm is given below.

• First understand what is happening in the code by refering to the language manual here.

• Generate the automata for the model and run some simulations.

• Next, add appropriate LTL specifications to the model file and select the Verification
option from the top menu. In the “Never Claims” section, select “use claim” and the click
on Run.

• What is the result? Is the model verified against the LTL specification? Explain your
answer based on the simulation run.

1

http://spinroot.com/spin/Man/ltl.html
http://spinroot.com/spin/Man/promela.html

ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

bool b[2]

active [2] proctype p()
{ pid k, i = pid, j = 1 − pid

C0: b[i] = false
C1: if

:: k!= i
C2: if

:: !b[j] → goto C2
:: else → k = i; goto C1
fi

:: else
CS: skip

fi
b[i] = true
skip
goto C0

}

2 Yet Another Lock: Proofs

2.1 Background

This task is taken from The Art of Multiprocessor Programming [2]. Consider the following
protocol to achieve n-thread mutual exclusion.

turn := 0
busy := false
Pi

do {
2 do {

turn := i
4 } while (busy)

busy := true
6 } while (turn != i)

critical section
8 busy := false

non-critical section

2.2 Task

For each of the following questions either provide a proof, or display an execution where it fails.

1. Does the protocol satisfy mutual exclusion?

2. Is the protocol starvation-free?

3. Is the protocol deadlock-free?

2

ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

3 Tree-based mutual exclusion

3.1 Background

This question assumes a “tree-based mutual exclusion” (TBME) algorithm which is based on
the following idea: The algorithm can be represented by a binary tree where each internal (non-
leaf) node represents a critical section shared by its descendants. The threads are at the leaves
of the tree. The root of the tree is the main critical section shared by all the threads.

To enter the main critical section, a thread starts at its leaf in the tree. The thread is re-
quired to traverse the path from its leaf up to the root, entering all the critical sections on
its path. Upon exiting the critical section, the thread traverses this path in reverse, this time
leaving all the critical sections on its path. Figure 1 illustrates this process. If thread 1 wants
to enter the main critical section, it must first enter critical section B. After having successfully
entered critical section B, thread 1 must enter critical section A, and so on.

thread 1 thread 2 thread 3 thread 4 thread 5

critical section B critical section C

critical section A

main critical

section

Figure 1: tree-based mutual exclusion algorithm example

At each internal node, there is a maximum of two threads competing against each other to
enter the node’s critical section. Therefore, a mutual exclusion algorithm for two threads (e.g.
Peterson’s algorithm for 2 threads) can be used to implement the critical section of an internal
node.

3.2 Task

1. What is the main advantage of the TBME algorithm over the Peterson algorithm for n
threads?

2. Provide a Java implementation of the TBME algorithm using the Peterson algorithm for
2 threads.

References

[1] http://fm.csl.sri.com/SSFT14/

[2] Maurice Herlihy und Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

3

	Proving Mutual Exclusion in Spin
	Background
	Task

	Yet Another Lock: Proofs
	Background
	Task

	Tree-based mutual exclusion
	Background
	Task

