
ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

Assignment 4: Semaphores

ETH Zurich

1 Semaphores

1.1 Background

Consider the following synchronisation problem. A new restaurant in town (with the peculiar
name of SemaFood) features a large communal pot of soup from which diners can help them-
selves at any point. At full capacity, the pot holds M servings of soup. When a diner wants to
eat, they help themselves to a serving from the pot, unless it is empty. In the case that the pot
is empty, the diner wakes up the cook and then waits until the cook has refilled the pot before
taking a serving.

Each diner process runs the following (unsynchronised) code:

while true loop
−− your code here
getSoupFromPot()
−− your code here
eat()

end

and exactly one cook process runs the following (unsynchronised) code:

while true loop
−− your code here
replenishSoup()
−− your code here

end

1.2 Tasks

1. Add (pseudo)code to the diner and cook processes that—through the use of semaphores—
establishes the following synchronisation constraints, without the possibility of deadlock:

• at most one diner can have access to the pot at a time;

• diners cannot invoke getSoupFromPot if the pot is empty;

• the cook can only invoke replenishSoup once the pot is empty.

Remember to declare the semaphores and shared resource(s) that you will use, and to
initialise them to appropriate values.

2. Explain why your solution is deadlock-free.

3. What assumptions must be made about the semaphores for your solution to be starvation-
free too?

1



ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

2 Interleaving with Semaphores

2.1 Background

This task is also taken from Foundations of Multithreaded, Parallel, and Distributed Program-
ming [1].

2.2 Task

Given the following processes and code, give the possible outputs of the interleavings:
s.count := 0
r.count := 1
x := 0
P1 P2 P3

s.down r.down r.down
r.down x := x * (x + 1) x := x + 2
x := x * 2 r.up r.up
r.up s.up

3 Unisex bathroom

3.1 Background

This task has been adapted from Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming [1]. In an office there is a unisex bathroom with n toilets. The bathroom is open to
both men and women, but it cannot be used by men and women at the same time.

3.2 Task

1. Develop a Java program that simulates the above scenario using semaphores from the Java
concurrency library. Your solution should be deadlock free, but it does not have to be
starvation free.

2. Justify why your solution is deadlock free.

References

[1] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison Wesley, 1999.

2


	Semaphores
	Background
	Tasks
	Solution

	Interleaving with Semaphores
	Background
	Task
	Solution

	Unisex bathroom
	Background
	Task
	Solution


