
ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

Assignment 5: Monitors

ETH Zurich

1 Queues

1.1 Background

There is a given generic queue class called Queue<T>, where T is the generic type of the queue
elements. You only know that Queue<T> follows FIFO rules on a single-threaded execution,
and offers the methods enqueue, dequeue, and size . No assumptions can be made about the
thread safety of these operations.

1.2 Tasks

1. Implement a bounded concurrent queue using Queue in Java or a suitable pseudocode.
The following operations must be implemented:

• void enqueue(T v), which enqueues the value v on the queue.

• T dequeue(), which dequeues a value and returns it to the caller.

• A constructor which takes the queue bound (> 0) as an argument.

You are to implement this using a signal-and-continue monitor and two condition variables,
one condition variable for “not empty” and one for “not full”. These condition variables
only provide two operations: signal and wait. Recall that signal only awakens a single
thread.

2. Imagine in the previous situation that a single condition variable is used for both the “not
empty” and “not full” conditions. With a single condition variable, can you guarantee
that a waiting enqueue (dequeue) operation is only awakened when the queue is not full
(empty)?

If yes, how? If not, what problem does this pose when only signal is available?

1



ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

1.3 Solution

1.3.1 Task 1

Solution in a sort of pseudo-Java (which allows ConditionVariables to be attached to the sur-
rounding monitor instead of a particular Lock).

class ConcQueue<T> {
Queue<T> q;

ConditionVariable not empty;
ConditionVariable not full ;
int bound;

ConcQueue(int bound)
{

this .q = new Queue<T>();
this .not empty = new ConditionVariable();
this . not full = new ConditionVariable();
this .bound = bound;

}

synchronized
enqueue(T v)
{
while (q.size () == bound)

not full .wait() ;

q.enqueue(v);

not empty.signal() ;
}

synchronized
T dequeue()
{

T result ;

while (q.size () == 0)
not empty.wait();

result = q.dequeue();

not full . signal () ;

return result ;
}
}

1.3.2 Task 2

No, a single condition variable cannot distinguish between different semantic conditions.

2



ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

This poses the problem that a signal could be “lost” by it waking up a thread that didn’t
require that condition to be true instead of a thread that did require that condition to be true.

2 Signal and continue vs. signal and wait

2.1 Background

Listing 1 shows a monitor class that defines three parts of a job.

Listing 1: three part job class with signal and wait

monitor class THREE PART JOB

feature
first part done : CONDITION VARIABLE

do first and third part
do

first part
first part done . signal −− ‘‘Signal and Wait’’ signaling discipline
third part

end

do second part
do

first part done .wait
second part

end
end

The condition variable first part done is used to ensure that the first and the third part are
executed by one thread t1 and that the second part is executed by another thread t2 in between
the first and the third part. This is the correctness specification.

2.2 Task

1. Assume that the condition variable implements the “Signal and Wait” discipline. Is the
code correct? If the code is correct, justify why it works. If the code is not correct, show
a sequence of actions that illustrates the problem.

2. Assume now that the condition variable implements the “Signal and Continue” discipline
instead. Is the code correct? If the code is correct, justify why it works. If the code is not
correct, show a sequence of actions that illustrates the problem.

3. If the program is not correct with the “Signal and Continue” discipline, rewrite the program
so that it is correct. To do this, use the “Signal and Continue” condition variables.

2.3 Solution

1. The code is not correct. It works if t2 gets the monitor first. If t1 gets the monitor first,
then t1 proceeds without synchronization. Once t2 gets the monitor, it blocks and ends
up in a deadlock.

3



ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

2. The code is not correct. If t1 gets the monitor first, then t1 proceeds without synchro-
nization. Once t2 gets the monitor, it blocks and ends up in a deadlock. If t2 gets the
monitor first, then t2 blocks and lets t1 proceeds without synchronization; only after t1 is
done will t2 continue.

3. The following code reproduces the correct behavior with the “Signal and Continue” sig-
naling discipline:

Listing 2: three part job class with signal and continue

monitor class THREE PART JOB

feature
first part done : CONDITION VARIABLE

monitor returned: CONDITION VARIABLE
entered first : BOOLEAN −− Initially set to ‘False ’

do first and third part
do

first part
first part done . signal −− ‘‘Signal and Continue’’ signaling discipline
entered first := True

monitor returned.wait
third part

end

do second part
do

if not entered first then
first part done .wait

end
second part
monitor returned.signal −− ‘‘Signal and Continue’’ signaling discipline

end
end

3 Deadlocks

3.1 Background

We have a monitor class:

monitor class BAZ
c: CONDITION VARIABLE
e: CONDITION VARIABLE
i : INTEGER
x: INTEGER

foo
do

if i < 5 then
c.wait

end

4



ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

x := i ∗ 2
e. signal
x := 10 − x

end

bar
do

i := 5
c. signal
i := i + 1
e.wait
x := 8 − x

end
end

3.2 Task

For the class given above, a thread will run foo and another will run bar. These executions
occur concurrently. Assume that i is initialized to 0.

Consider the execution with both the signal-and-wait, and signal-and-continue signaling
disciplines. For each signaling discipline, state and justify:

• whether the program will deadlock.

• if the program does not deadlock, what the value of x is at termination.

3.3 Solution

For signal-and-wait:

• foo is called first: deadlock.

• bar is called first: result is 14.

For signal-and-continue:

• foo is called first: result is 10.

• bar is called first: result is 10.

5


	Queues
	Background
	Tasks

	Signal and continue vs. signal and wait
	Background
	Task

	Deadlocks
	Background
	Task


