
ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

Assignment 7: Lock-free approaches

ETH Zurich

1 Concurrent Logger

1.1 Background

Your company is developing an application server, which, for security reasons, has to log every
action. The log is stored in memory and crawled by various intrusion detection algorithms.
Since the current logger uses a lock—which is obviously a performance bottleneck—you decided
to rewrite it using lock-free techniques.

A log entry contains a date and a message. The date, which also contains the time, is
represented as a long integer. The message is a string. Adding a log entry should not require
traversing the whole log.

Java provides several classes that support atomic compare-and-set, in particular, AtomicLong
to store long integers, and AtomicReference<V> to store references such as String. These classes
have three important methods:

// Atomically sets the value to the given updated value if the current value == the
expected value. Returns true if successful .

boolean compareAndSet (V expect, V update);

//Gets the current value.
V get() ;

//Sets to the given value.
void set(V newValue);

1.2 Task

Your task is to implement this logger according to the interface below, without using locks:

public interface Logger {
//Adds a new log entry
void addLogEntry (long date, String message);
}

Hint: The data structure for the log should not have a fixed capacity and it should be possible
to add retrieving and pruning methods later. You may define as many classes as you need for
completing the task.

1.3 Solution

public class LockFreeLogger implements Logger {
private final LogEntry first = new LogEntry(0, ”Initializing logger”);
private volatile LogEntry almostLast = first;

1

ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

@Override
public void addLogEntry(long date, String message) {

LogEntry current = null;
LogEntry newEntry = null;
do {

for (current = almostLast; current.next.get() != null; current = current.next.
get()) ;

newEntry = new LogEntry(date, message);
} while (!current.next.compareAndSet(null, newEntry));
almostLast = newEntry;

}
}

class LogEntry {
public final long date;
public final String message;
public final AtomicReference<LogEntry> next = new AtomicReference<>();

public LogEntry(long date, String message) {
this.date = date;
this.message = message;

}
}

2 Spin Lock

2.1 Background

A spinlock[1] is a simple (but not very efficient) lock-free algorithm in which a thread trying to
acquire a lock is made to wait in a loop while checking if the lock is free. It is an example of
a busy-waiting algorithm because the thread waiting in the loop is not idle, but not doing any
useful work either.

2.2 Task

You task is to write fill in the pseudocode for the acquire and release methods of the spinlock
class given below. Assume that there is a function compare and swap(target, old, new).

class SPINLOCK
2

feature locked: INTEGER
4

feature make
6 do

−− write your code here.
8 end

10 feature acquire
do

12 −− write your code here.
end

14
feature release

2

ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

16 do
−− write your code here.

18 end
end

2.3 Solution

1
class SPINLOCK

3 feature
locked : INTEGER

5
feature make

7 do
locked := 0

9 end

11 feature acquire
local

13 stop: BOOLEAN
do

15 from
stop := False

17 until
stop

19 loop
stop := compare and swap (locked, 0, 1)

21 end
end

23
feature release

25 do
locked := 0

27 end
end

3 Atomic update of multiple values

3.1 Background

An online game with thousands of players features a daily high score. The high score consists
of the player’s name and the score he or she achieved. Profiling determined that the current
lock-based implementation is a bottleneck.

3.2 Task

You are asked to provide a prototype of a lock-free solution, pseudo-code is sufficient. You can
use an integer for the score. Provide a routine to update the high score if the new score is better
and a routine to retrieve the current high score. If you need additional data structures, describe
them as well.

You may use atomic CAS: assume that there is a function compare and swap(target, old, new).

3

ETHZ D-INFK
Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2015

3.3 Solution

−− A class providing the mechanisms for the daily high score
2 class HIGH SCORE

feature {NONE}
4 −− The name and score of the player having achieved the highest score today. A tuple is

used to be able to set it atomically.
data: TUPLE[name: STRING, score: INTEGER]

6 feature retrieve: TUPLE[STRING, INTEGER]
−− Retrieve the name and score of the player currently havig the highest score.

8 do
−−Atomic retrieval of the current high score. Creating a copy to ensure changes to

the Result are not propagated.
10 Result := data.copy

end
12 feature update (a name: STRING; a score: INTEGER)

−− Checks the current high score and replaces it with the new score by the player
named ‘a name’ if ‘a score ’ is greater than the current high score.

14 local
l data , l new data: like data

16 l success : BOOLEAN
do

18 from
l success := False

20 until
l success

22 loop
−− Atomic retrieval of the current high score.

24 l data := data
l success := l data . score >= a score or else

26 compare and swap (data, l data, [a name, a score])
end

28 end
end

References

[1] http://en.wikipedia.org/wiki/Spinlock

4

	Concurrent Logger
	Background
	Task
	Solution

	Spin Lock
	Background
	Task
	Solution

	Atomic update of multiple values
	Background
	Task
	Solution

