ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Dr. S. Nanz, Dr. C. Poskitt Spring 2015

Assignment 8: Correctness conditions

ETH Zurich

1 Stack

1.1 Background

Figure 1 shows a history for three threads. Each time line corresponds to one thread. All the
threads work on a single stack s. The query s.top (i) expects an element i to be on top of stack
s. Note that s.top (i) does not remove the top item. The command s.push (i) pushes an element
i on top of the stack s.

00:00:00 - 00:00:03
s.push(0)
00:00:00 - 00:00:06
s.push(1)
00:00:03 - 00:00:05 00:00:05 - 00:00:07
s.top(1) s.top(0)
Figure 1: History
1.2 Task

1. Is the history shown in figure 1 linearizable? Justify your answer.

2. Is the history shown in figure 1 sequentially consistent? Justify your answer.

1.3 Solution

1. The history is not linearizable. The call to s.push(1) must happen before s.top(1), because
s.top(1) expects an element i on top of the stack. The call to s.push(0) must not happen
before the call to s.top(1) took effect. The earliest point when s.top(1) can take effect is
at the start of its time span. This is however already too late for s.push(0) to take effect.

2. The history is sequentially consistent. An equivalent legal sequential history is given by:

(a) Thread 2 s.push(1)
) Thread 2 s:void
) Thread 3 s.top(1)
) Thread 3 s:1
(e) Thread 1 s.push(0)
(f) Thread 1 s:void
) Thread 3 s:top(0)
) Thread 3 s:0

ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Dr. S. Nanz, Dr. C. Poskitt Spring 2015

2 Non-linearizable queue

2.1 Background

This task has been adapted from [1]. The AtomicInteger class is a container for an integer value.
One of its methods is boolean compareAndSet(int expect, int update). This method compares
the object’s current value to expect. If the values are equal, then it atomically replaces the
object’s value with update and returns true. Otherwise, it leaves the object’s value unchanged,
and returns false. This class also provides int get() which returns the object’s actual value.

Consider the following FIFO queue implementation. It stores its items in an array items, which,
for simplicity, we will assume has unbounded size. It has two AtomicInteger fields. head is the
index of the next slot from which to remove an item. tail is the index of the next slot in which
to place an item.

class IQueue<T> {
AtomicInteger head = new AtomicInteger(0);

Atomiclnteger tail = new AtomicInteger(0);
T items = (T]]) new Object[Integer. MAX_VALUE];

public void eng(T z) {
int slot;
do {
slot = tail. get();
} while (! tail . compareAndSet(slot, slot + 1));
items| slot] = z;

}

public T deg() throws EmptyException {
T value;
int slot;

do {
slot = head.get();
value = items[slot |;
if (value == null) {
throw new EmptyException();

} while (lhead.compareAndSet(slot, slot + 1));
return value;

}
}

2.2 Task

Give an example showing that this implementation is not linearizable.

2.3 Solution

The problem is that the two consecutive operations tail . compareAndSet(slot, slot + 1) and
items[slot] = x do not happen atomically. The problem is illustrated in the following execution.

1. Thread 1 calls ¢.eng(el) with a matching element el.

ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Dr. S. Nanz, Dr. C. Poskitt Spring 2015

2. Thread 1 executes tail . compareAndSet(slot, slot + 1) and exits the loop.
3. Thread 2 calls ¢.eng(e2) with a matching element e2.

4. Thread 2 executes tail .compareAndSet(slot, slot + 1), exits the loop and executes items
[slot] =

5. Thread 2 finishes the call to q.eng(e2).
6. Thread 3 calls q.deq().

7. Thread 3 executes slot = head.get() and value = items[slot]. The slot is the one set by
thread 1. Note that thread 1 did not set the value for this slot yet.

8. Thread 3 throws an exception because value is null.

9. Thread 1 executes items| slot] = x.
10. Thread 1 finished the call to g.eng(el).
The execution is depicted in the following history.
1. Thread 1 g.enq(el)
2. Thread 2 g.enq(e2)
Thread 2 q:void

Ll

Thread 3 q.deq()
5. Thread 3 q:EmptyException()
6. Thread 1 q:void

The history is not linearizable. In the history above the call by thread 2 precedes the
call by thread 3. This precedence relation must be preserved in any equivalent sequential
history. Furthermore such a history can not have any other dequeue operations other than the
one by thread 3. Therefore any such history would be invalid because a dequeue operation
after a enqueue operation must not throw an empty exception in the absence of other dequeue
operations.

3 Binary search tree

3.1 Background

Listing 1 shows the class of a binary search tree. The class defines a feature insert to add a
value to a tree and a feature has to check whether the tree contains a value.

Listing 1: Non-linearizable binary search tree
class BINARY_SEARCH_-TREE

2
create
4 make
6 feature —— Initialization
make (a_value: INTEGER)
8 —— Initialize this node with ’a_value’.

ETHZ D-INFK Concepts of Concurrent Computation — Assignments

Dr. S. Nanz, Dr. C. Poskitt

Spring 2015

do
10 left := Void
right = Void
12 value := a_value
end
14
feature —— Access

16 left: BINARY_SEARCH_TREE
—— The left sub tree.
18 right: BINARY_SEARCH_TREE
—— The right sub tree.
20 walue: INTEGER
—— The value.
22
feature —— Basic operations
24 insert (a-new_value: INTEGER)
—— Insert ’a_new_value’ into the tree.
26 require
tree_does_not_have_new_value: not has (a_new_value)
28 do
if a_new_value < Current.value then

30 if not left = Void then
left . insert (a-new_value)
32 else

left := create { BINARY_SEARCH_TREFE}.make (a_new_value)
34 end

else
36 if not right = Void then
right . insert (a_new_value)
38 else

right := create { BINARY_SEARCH_TRFEFE}.make (a-new_value)
40 end
end
42 end

44 has (a-value: INTEGER): BOOLEAN
—— Does the tree have ’a_value’?

46 do
if a_value = Current.value then
48 Result := True
else
50 if a_value < Current.value then
if not left = Void then
52 Result := left. has (a_value)
else
54 Result := False
end
56 else
if not right = Void then
58 Result := right.has (a_value)
else
60 Result := False

ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Dr. S. Nanz, Dr. C. Poskitt Spring 2015

end
62 end
end
64 end
end

3.2 Task

1. Devise an execution sequence that demonstrates that the binary search tree from Listing
1 is not linearizable; provide a corresponding history and explain why this history is non-
linearizable.

2. Using the feature compare_and_swap, develop a linearizable version of the binary search
tree class. Provide only the changed features.

The feature compare_and_swap ($entity, test_value, new_value) sets the value of an entity
to new_value if and only if the entity currently has the value test_value; the feature call
returns whether or not the test was successful. Here, the $ operator returns the address
of the entity.

3.3 Solution

3.3.1 Task 1

Consider the following execution based on an entity n of type BINARY_SEARCH_TREEF:
1. Thread 1: Calls create n.make (10) and finishes.

2. Thread 1: Calls n.insert (5). Continues until left := create { BINARY_SEARCH_TREFE
}.make (a_new_value).

3. Thread 2: Calls n.insert (4) and finishes.

4. Thread 1: Executes left := create { BINARY_SEARCH_TREE}.make (a-new_value). This
overrides the value set by thread 2.

5. Thread 3: Executes n.has (4). Returns that the element could not be found.
The following history represents this execution:

1. Thread 1: create n.make (10)

Thread 1: n:void

Thread 1: n.insert (5)

Thread 2: n.insert (4)

Thread 2: n:void

Thread 1: n:void

Thread 3: n.has (4)

®©® N ot W

Thread 3: n:False

There are only two possible equivalent sequential histories that preserve the order relation.
One of the histories lets the first thread insert its value first:

10

12

14

16

ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Dr. S. Nanz, Dr. C. Poskitt Spring 2015

1. Thread 1: create n.make (10)
Thread 1: n:void

Thread 1: n.insert (5)
Thread 1: n:void

Thread 2: n.insert (4)
Thread 2: n:void

Thread 3: n.has (4)

® N o v Wb

Thread 3: n:False

The other one lets the second thread insert its value first:
1. Thread 1: create n.make (10)

Thread 1: n:void

Thread 2: n.insert (4)

Thread 2: n:void

Thread 1: n.insert (5)

Thread 1: n:void

Thread 3: n.has (4)

® N o v W

Thread 3: n:False

Both histories are illegal because the value 4 should not be reported as missing. Hence the
implementation is not linearizable.

3.3.2 Task 2

Listing 2: Linearizable binary search tree
insert (a-new_value: INTEGER)

—— Insert ’a_new_value’ into the tree.
require

tree_does_not_have_new_value: not has (a-new_value)
local

l_cached_sub_tree : BINARY_SEARCH_TREFE —— The cached sub tree.
do
if a_new_value < Current.value then
[_cached_sub_tree := left
if not [_cached_sub_tree = Void then
left . insert (a-new_value)
else
if not compare_and_swap ($left, l_cached_sub_tree , create {
BINARY_SEARCH_TREE}.make (a_new_value)) then
left . insert (a-new_-value)
end
end

18

20

22

24

26

ETHZ D-INFK Concepts of Concurrent Computation — Assignments

Dr. S. Nanz, Dr. C. Poskitt Spring 2015
else
l_cached_sub_tree := right

if not [_cached_sub_tree = Void then

right . insert (a-new_value)

else
if not compare_and_swap ($right, I_cached_sub_tree, create {

BINARY_SEARCH_TREE}.make (a_new_value)) then
right . insert (a_new_value)

end

end

end
end

The binary search tree is linearizable. When an insert operation runs in parallel to a number
of insert operations, then the tree will contain the values of all these insert operations. When
a has operation runs in parallel to a number of insert operations then the has operation might
return true or false for the values of these insert operations. When the has operation runs after
a number of insert operations then the has operation returns true for the values of these insert
operations. For all other values the has operation returns false.

We now take a look at a history, by going from left to right; we look at the operations in
the order in which they start. If multiple operations start at the same time, we look at these
operations in a random order. As we go through the history, we construct a new sequential
history, starting from an empty one.

If the current operation is an insert operation then we add the insert operation to the end
of the sequential history.

If the current operation is a has operation that returns true for a value from an already
added insert operation then we add the has operation to the end of the sequential history.

If the current operation is a has operation that returns true for a value from a not yet
added insert operation then the has operation must have run in parallel to a matching insert
operation. In this case, we stall the has operation and add it after the insert operation
as soon as we add the insert operation. This preserves the order relation because the
insert operation ran in parallel to the has operation and hence we can choose the ordering
between the two in the sequential history.

If the current operation is a has operation that returns false and there is no insert operation
that inserts this value then we add the has operation to the end of the sequential history.

If the current operation is a has operation that returns false and there is an insert operation
that inserts this value then either this insert operation must have run in parallel to the
has operation or it must have run after the has operation.

— In case the insert operation ran in parallel to the has operation, we have to distinguish
two situations. One one hand, it could be that the insert operation has already been
added, in which case we add the has operation in front of the insert operation. This
preserves the order relation because the insert operation ran in parallel to the has
operation and hence we can choose the ordering between the two in the sequential
history. On the other hand, it could be that the insert operation has not been added,
in which case we add the has operation to the end of the sequential history.

— In case the insert operation ran after the has operation, we add the has operation to
the end of the sequential history.

ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Dr. S. Nanz, Dr. C. Poskitt Spring 2015

Because we add operations in the order in which they started with the only exception of
operations that ran in parallel, the history produced in this way is an equivalent sequential
history that preserves the order relation. The history is legal because no has operation returns
true for a value that has not been added or false for a value that has been added. Hence, the
binary search tree implementation is linearizable.

4 Practical sequential consistency

4.1 Background

One of the implicit simplifying assumptions behind many of the example programs presented
in the course has been that sequential consistency is being followed. Recall that sequential
consistency essentially means that the relative ordering of operations between threads does not
have to be maintained, but the per-thread ordering of operations should be kept. However, this
assumption is invalidated quite easily by both compilers and hardware without careful attention.

Compilers are free to reorder the instructions given in the program text, given that it does
not change the output of the sequential program.

For example:

1 a:=1

b =2
can be rewritten to

b:=2

2 a:=1

if the compiler thinks it would be faster, as the output of the sequential program is the same in
either case.

4.2 Task

Consider this one-shot Peterson locking algorithm:

enterl := true

2 turn =2
if not enter2 or turn = 1 then
4 critical section
enterl := false
6 end

How does this locking algorithm break if the compiler (or CPU) can reorder reads and writes
to independent variables? To see how, it may help to rewrite the algorithm so that intermediate
expressions are computed and stored into temporary variables, for example, turning a + 1 = b
into

tmpl ;= a+ 1
2 tmp2:=tmpl=1>

4.3 Solution

Because the accesses to enter! and enter?2 are to independent locations, these can be reordered.
For the first processor (similarly for the second) the program could be rewritten as

ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Dr. S. Nanz, Dr. C. Poskitt Spring 2015

tmp := not enter?
2 enterl := true
turn = 2
4 if tmp or turn = 1 then
critical section
6 enterl := false
end

Now, both processes will calculate tmp as True, since initially both entry variables are Fulse.
Therefore, both will enter the critical section at the same time, violating mutual exclusion.

5 Linearizability

5.1 Background

The following listing shows the class for a lock that is based on a faulty implementation of the
bakery algorithm. The class defines a feature lock to acquire the lock and a feature unlock to
release the lock. The feature owns_lock returns whether a thread currently owns the lock. The
feature make creates the lock for threads 1...n.

class BAKERY_LOCK create make
2
feature { NONE} —— Implementation and initialization
4 numbers: ARRAY [INTEGER] —— The numbers.
is_lock_owner: ARRAY [BOOLEAN] —— Which thread is the lock owner?

6
make (n: INTEGER)
8 —— Initialize this lock for threads 1 to 'n’.
do
10 create numbers.make (1, n); numbers. fill_with (0)

create is_lock_owner.make (1, n); is_lock_owner. fillwith (False)
12 end

14 feature —— Basic operations
lock (i: INTEGER)
16 —— Acquire this lock for thread ’i’.
do
18 numbers [i] := 1 + max (numbers)
for all j /=1ido
20 await numbers [j] = 0 or (numbers [i], i) < (numbers [j], 7)
end
22 is_lock_owner [i] := True
end
24
unlock (i: INTEGER)
26 —— Release this lock for thread ’i’.
do
28 number [i] := 0
is_lock_owner [i] := False
30 end

32 owns.lock (i: INTEGER): BOOLEAN
—— Is thread ’i’ the lock owner?

ETHZ D-INFK Concepts of Concurrent Computation — Assignments

Dr. S. Nanz, Dr. C. Poskitt Spring 2015
34 do Result := is_lock_owner [i] end

end

5.2 Task

1. Devise an execution sequence that demonstrates that the bakery lock from the listing
is non-linearizable; provide a corresponding history and explain why this history is non-
linearizable.

2. Suggest a fix to make the bakery lock linearizable. Explain why the fix solves the issue.

5.3 Solution
Consider the following execution based on an entity [of type BAKEFRY_LOCK:
1. Thread 1: Calls create [.make (2) and finishes.

2. Thread 1: Calls [.lock (1) and continues until it evaluated 1 4+ maz(numbers). The
evaluation results in 0.

3. Thread 2: Calls I.lock (2) and continues until it evaluated 1 4+ maz(numbers). The
evaluation results in 0.

Thread 2: Assigns 1 as its number.
Thread 2: Passes the wait statement because thread 1 has 0 as its number.
Thread 2: Finishes [. lock (2).

Thread 1: Assigns 1 as its number.

® N o oA

Thread 1: Passes the wait statement because both threads have the same number, and
thread 1 has a lower identifier than thread 2.

9. Thread 1: Finishes [.lock (1).

10. Thread 1: Calls I.owns_lock (1) and finishes it with a positive result.
11. Thread 2: Calls [.owns_lock (2) and finishes it with a positive result.
12. Thread 1: Calls I.unlock (1) and finishes.

13. Thread 2: Calls [.unlock (2) and finishes.

The following history represents this execution:

1. Thread 1: create l.make (2)
2. Thread 1: L:void

Thread 1: l.lock (1)
Thread 2: 1.lock (2)
Thread 2: l:void

Thread 1: l:void

N v w

Thread 1: l.owns_lock (1)

10

2

10

12

14

16

18

20

22

24

26

28

30

32

ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Dr. S. Nanz, Dr. C. Poskitt Spring 2015

8. Thread 1: 1:True

9. Thread 2: l.owns_lock (2)
10. Thread 2: 1:True

11. Thread 1: Lunlock (1)
12. Thread 1: l:void

13. Thread 2: Lunlock (2)
14. Thread 2: l:void

There are only a few possible equivalent sequential histories that preserve the order relation.
In all of them, both lock checks must occur after both lock operations; furthermore, both unlock
operations must occur after both lock check operations. None of these histories is valid because
in all of them two different threads own the lock at the same time, and this is against the validity
constraints of the lock.

The problem can be fixed by noting when a thread is choosing its number. A thread can
then only check the other numbers if no other thread is currently choosing a number. This is
shown in the following listing:

class BAKERY_LOCK create make

feature { NONE} —— Implementation and initialization

numbers: ARRAY [INTEGER] —— The numbers.
choosing: ARRAY [BOOLEAN] —— Which thread is choosing his number?
is_lock_owner: ARRAY [BOOLEAN] —— Which thread is the lock owner?
make (n: INTEGER)
—— Initialize this lock for threads 1 to 'n’.
do
create numbers.make (1, n); numbers. fill_with (0)
create choosing.make (1, n); numbers. fill_with (False)
create is_lock_owner.make (1, n); is_lock_owner. fill_with (False)
end
feature —— Basic operations
lock (i: INTEGER)
—— Acquire this lock for thread ’i’.
do
choosing [i] := True
numbers [i] := 1 + max (numbers)
choosing [i] := False
for all j /=1ido
await choosing [j] = False
await numbers [j] = 0 or (numbers [i], i) < (numbers [j], j)
end
is_lock_owner [i] := True
end
unlock (i: INTEGER)
—— Release this lock for thread ’i’.
do

11

ETHZ D-INFK Concepts of Concurrent Computation — Assignments

Dr. S. Nanz, Dr. C. Poskitt Spring 2015
number [i] := 0
34 is_lock_owner [i] := False
end
36
owns_lock (i: INTEGER): BOOLEAN
38 —— Is thread ’i’ the lock owner?
do Result := is_lock_owner [i] end
40 end
References

[1] Maurice Herlihy und Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

12

	Stack
	Background
	Task

	Non-linearizable queue
	Background
	Task

	Binary search tree
	Background
	Task

	Practical sequential consistency
	Background
	Task

	Linearizability
	Background
	Task

