Concepts of Concurrent Computation
Spring 2015

| ecture 1: Overview

Sebastian Nanz
Chris Poskitt

Chair of v
@Software Engineering ETH:zurich

Practical detalls

= Schedule
Tuesday 10-12 RZF 21 lecture
Wednesday 14-15 RZF 21 exercise class
Wednesday 15-17 RZF 21 seminar

= Course page
http://se.inf.ethz.ch/courses/2015a spring/ccc/

= | ecturers
= Dr. Sebastian Nanz
= Dr. Chris Poskitt

= Assistants
= Chandrakana Nandi (exercise class)
= Mischael Schill (project)

Grading

= Exam: 50%

» End-of-semester exam
= Date: 26 May 2015 (at the usual lecture time)

= Project: 35%
» Build a small concurrent system

= Seminar talk: 15%
» Present a recent research paper

Project

» (QOrganization
= Teams of 1-3 students
= Multiple deadlines/milestones
» Support: Mischael Schill + mailing list

= Project overview
= “Bomberman” game

» [ess concurrency-relevant code given
= |mplemented using SCOOP

= \What is SCOOP?

= A high-level programming model for concurrency
= Covered in a future lecture

» For ease of installation, programming framework and project files
provided as virtual machine

Seminar: Overview

* The seminar connects the course topics to recent research
results

= Research papers from 2011-2014

= The seminar consists of student presentations
= 15 min paper presentation (with slides) + questions

= The seminar lives from discussions about the papers
» Read papers and prepare guestions in advance

Seminar: Grading

= Content
= Technical correctness
= Coherent development of concepts
= Selection of content
= Visualization of content
= Own contributions: own examples, own evaluation, tracing of
the paper’s impact
* Presentation
= Slides (style, grammar, spelling)
» Use of other aids
= Voice & speech
» Audience engagement/stage presence
= Timing/pace

Seminar: Paper selection

= You will get an email today, with a list of papers and
instructions for telling us your choice (doodle)

» Respond no later than this Friday, 20 February, 12:00

* |f you don’t get the email today or miss the deadline, please
email the assistants

= Tomorrow, 18 February:
= 14:15 First exercise class
= Hand-out of the project description
= No seminar: use the time for paper selection

Purpose of the course

To introduce you to the main concurrency approaches and
give you an idea of their strength and weaknesses

» Practical approaches to concurrent programming
= Modelling and reasoning about concurrency

To enable you to get a concrete grasp of the issues and
solutions through a course project

To connect to recent research through a seminar

Course overview

» Practical approaches to concurrent programming
= [ssues: data races, deadlock, starvation
= Synchronization algorithms
= Semaphores
= Monitors
» |anguage examples: SCOOP and others
= |ock-free programming and Software Transactional Memory

» Modelling and reasoning about concurrency
» Proofs of concurrent programs
= Temporal logic
= Petri nets
= Process calculi: CCS

Crossing the chasm

» Formal models provide an elegant theoretical basis, but
= Have little connection with practice
» Handle concurrency aspects only

» Practice of concurrent programming
= Little influenced by above
= [ow-level mechanisms still predominant

* |nthe course, we look at both theoretical and practical
approaches to concurrency

10

Recommended textbooks

= Mordechai Ben-Ari. Principles of Concurrent and Distributed
Programming. Prentice Hall, 2006

= Maurice Herlihy and Nir Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008

= Gregory R. Andrews. Foundations of Multithreaded, Parallel,
and Distributed Programming. Addison Wesley, 1999

= Draft of a textbook for this course

= More literature recommendations: see individual lectures

11

What is concurrency?

Origins of concurrency in computing

= (Concurrency is not a new topic but one most programmers
have been able to avoid

= Previously perceived as a very specialized topic
= Systems programming
» Databases
= High-performance computing

13

Multiprocessing

» Many of today’s computations can take advantage of multiple
processing units (multi-core processors)

Process 1 HHHHHH H H CPU 1
S — IIIIII I I—> CPU 2

Instructions

= Multiprocessing: the use of more than one processing unit in a
system

« Execution of processes is said to be parallel, as they are
running at the same time

14

Multitasking/multithreading

» Even on systems with a single processing unit we may give
the illusion of that several programs run at once

AN = e

Instructions

= Multitasking/multithreading: the operating system switches
between the execution of different tasks/threads

« Execution of processes is said to be interleaved, as all are in
progress, but only one is running at a time

15

Concurrency # Parallelism

Both multiprocessing and multitasking are examples of
concurrent computation

The execution of processes is said to be concurrent if it is
either parallel or interleaved

In this terminology, parallelism is a form of concurrency

In programming, the terms are often used to emphasize the
type of problem they solve

= Concurrent programming: nondeterministic composition of
independently executing processes

» Parallel programming: efficient execution of a deterministic
computation on multiple processing units

16

Operating system processes

= How are processes implemented in an operating system?

= Structure of a typical process:
= Process identifier: unique ID of a process.
= Process state: current activity of a process.
= Process context: program counter, register values.
= Memory: program text, global data, stack, and heap.

Process |ID

Heap
Stack

Code

Program
counter

Register
values

17

The scheduler

= A system program called the scheduler controls which
processes are running

* The scheduler sets the process states:
= new. being created
= running: instructions are being executed
= blocked: currently waiting for an event
= ready: ready to be executed, but not assigned to a processor
= terminated: finished executing

Context switch

18

Blocked processes

» A process can get into state blocked by executing special
program instructions (synchronization primitives)

= When blocked, a process cannot be selected for execution

= A process gets unblocked by external events which set its
state to ready again

19

The context switch

* The swapping of processes on a processing unit by the
scheduler is called the context switch

P

‘x\
.
S
S,
Y

Context

CPU

Registers

= Scheduler actions when switching processes P1 and P2:

Pl.state := ready
// Save register values as P1l's context in memory

// Use context of P2 to set register values

P2.state := running

20

Threads

= Make programs concurrent by associating them with threads

» Athread is a part of an operating system process

= Private components
» Thread identifier
= [hread state Code Global data Heap
= Thread context

Process ID

Thread ID, | Thread ID, Thread |D4
= Memory: only stack e,

Program Program Program
m Shal’ed CompOﬂeﬂtS counter counter counter
- Program text Register Register Register
- G Iobal d ata values values values
" H ea p Stack Stack Stack

21

Expressing concurrency

Example: Java Threads

= How to associate computations with threads in Java?
* |nherit from Thread, or
= |mplement the Runnable interface

class Worker implements Runnable { void compute() {
private int input; Worker wl = new Worker(23);
private int result; Worker w2 = new Worker(42);
public Worker(int i) { Thread tl = new Thread(wl);
input = i; Thread t2 = new Thread(w2);
}
public void run() { tl.start();
// computation t2.start();
¥ }

public int getResult() {
return result;

}
¥

23

Abstract notation

= A program which at runtime gives rise to a process containing
multiple threads is called a concurrent program

= How to specify threads” Every programming language
provides a different syntax

= We use an abstract notation for concurrent programs

Initialization of global variables

~__— Thread ID

Line numbers

Code of concurrently
executing threads

24

Execution sequences

X := 0

P1 P2

1 |x := 0 1 |x := 2
2 | X :=x+1

= Execution can give rise to this execution sequence

Instruction executed Variable values after
with Thread ID and x\ / execution of the code

line number C/Pl 1 |y := @ X 2 0 on the line
P2 |1 |x =2 X = 2
P1 |2 (X :=x+1|x =3

» |s this the only possible execution sequence?

25

Benefits and challenges of
concurrency

Why concurrency?

= Responsiveness
= GUI programming
= Network programming
= Communicating with multiple hardware devices

= Program structuring

» Handle nondeterministic events in a modular way
= Model concurrency in the real world

= Performance
= Speeding up computations

27

The end of Moore‘s Law as we knew it

10,000,000 .
Transistor
density
1,000,000
100,000
10,000
1,000 Clock speed]
100
10
1 o * m Transistors (000) L
@ Clock Speed (MHz)
L] L] o
e o0 A Power (W)
@ Perf/Clock (ILP)
0 [[[
1970 1975 1980 1985 1990 1995 2000 2005 2010 Source: Intel

28

Why do we care?

The “end of Moore’s law as we knew it” has important
implications on the software construction process

Computing is taking an irreversible step toward parallel
architectures

= Hardware construction of ever faster sequential CPUs has hit
physical limits

= Clock speed no longer increases for every new processor
generation

= Moore’s Law expresses itself as exponentially increasing number of
processing cores per chip

If we want programs to run faster on the next processor
generation, the software must exploit more concurrency

29

Amdahl’s Law

= We go from 1 processor to n processors. What gain may we
expect?

= Amdahl’'s law severely limits our hopes!

= Define gain as: old_execution_time

speedup = : :
new_execution_time

= Not everything can be parallelized!

speedup =

) | ;p] /[ng —Parallel part

% parallelizable ~ Number of
Processors

Sequential part

30

Amdahl’s law: Example (1)

= Assume 10 processing units. How close are we to a 10-fold
speedup?
= 60% concurrent, 40% sequential:

speedup = =217
1-06 + (0.6/10)

= 80% concurrent, 20% sequential:
]
speedup = = 3.57

1-08 + (0.8/10)

31

Amdahl’s law: Example (2)

= 90% concurrent, 10% sequential:

]
speedup = =5.26

1-09 + (09/10)

= 99% concurrent, 1% sequential:

]
speedup = =9.17

1-099 + (0.99/10)

32

Types of concurrent computation

Types of parallel computation

= Flynn’s taxonomy: classification of computer architectures

= (Considers relationships of instruction streams to data streams

Single Instruction Multiple Instruction
Single Data SISD
Multiple Data SIMD MIMD
SISD SIMD MIMD
No parallelism Vector processor Multiprocessing

(uniprocessor) GPU (predominant today)

34

MIMD variants

= SPMD (Single Program Multiple Data)
= All processors run the same program, but at independent speeds
= No lockstep as in SIMD

= MPMD (Multiple Program Multiple Data)

= Often manager/worker strategy: manager distributes tasks, workers
return result to manager

35

Shared memory model

= All processors share a common memory

= Shared-memory communication

Memory

%\»

Processor,

Processor, Processor,

36

Distributed memory model

= Each processor has own local memory, inaccessible to others
= Message-passing communication

= Common for SPMD architecture

Memory, Memory, Memory,,
Processor, Processor, o Processor,
A A A

message passing

37

