
Concepts of Concurrent Computation  
Spring 2015���

���

Lecture 1: Overview!

Sebastian Nanz
Chris Poskitt

Chair of
Software Engineering

Practical details
§  Schedule!

Tuesday 10-12 RZ F 21 lecture!
Wednesday 14-15 RZ F 21 exercise class!
Wednesday 15-17 RZ F 21 seminar!

§  Course page!
http://se.inf.ethz.ch/courses/2015a_spring/ccc/!

§  Lecturers!
§  Dr. Sebastian Nanz!
§  Dr. Chris Poskitt!

§  Assistants!
§  Chandrakana Nandi (exercise class)!
§  Mischael Schill (project)!

2

Grading
§  Exam: 50%

§  End-of-semester exam!
§  Date: 26 May 2015 (at the usual lecture time)!

§  Project: 35%
§  Build a small concurrent system!

§  Seminar talk: 15%
§  Present a recent research paper!

3

Project
§  Organization!

§  Teams of 1-3 students!
§  Multiple deadlines/milestones!
§  Support: Mischael Schill + mailing list!

§  Project overview!
§  “Bomberman” game!
§  Less concurrency-relevant code given!
§  Implemented using SCOOP!

§  What is SCOOP?!
§  A high-level programming model for concurrency!
§  Covered in a future lecture!
§  For ease of installation, programming framework and project files

provided as virtual machine!

4

Seminar: Overview
§  The seminar connects the course topics to recent research

results!
§  Research papers from 2011-2014!

§  The seminar consists of student presentations!
§  15 min paper presentation (with slides) + questions!

§  The seminar lives from discussions about the papers!
§  Read papers and prepare questions in advance!

5

Seminar: Grading
§  Content

§  Technical correctness !
§  Coherent development of concepts!
§  Selection of content!
§  Visualization of content!
§  Own contributions: own examples, own evaluation, tracing of

the paper’s impact

§  Presentation
§  Slides (style, grammar, spelling)!
§  Use of other aids!
§  Voice & speech!
§  Audience engagement/stage presence!
§  Timing/pace!

6

Seminar: Paper selection
§  You will get an email today, with a list of papers and

instructions for telling us your choice (doodle)!
§  Respond no later than this Friday, 20 February, 12:00
§  If you don’t get the email today or miss the deadline, please

email the assistants!
!
§  Tomorrow, 18 February:

§  14:15 First exercise class
§  Hand-out of the project description
§  No seminar: use the time for paper selection!

7

Purpose of the course
§  To introduce you to the main concurrency approaches and

give you an idea of their strength and weaknesses!
§  Practical approaches to concurrent programming!
§  Modelling and reasoning about concurrency!

§  To enable you to get a concrete grasp of the issues and
solutions through a course project!

§  To connect to recent research through a seminar!

8

Course overview
§  Practical approaches to concurrent programming!

§  Issues: data races, deadlock, starvation!
§  Synchronization algorithms!
§  Semaphores!
§  Monitors!
§  Language examples: SCOOP and others!
§  Lock-free programming and Software Transactional Memory!

§  Modelling and reasoning about concurrency!
§  Proofs of concurrent programs!
§  Temporal logic!
§  Petri nets!
§  Process calculi: CCS!

9

Crossing the chasm
§  Formal models provide an elegant theoretical basis, but!

§  Have little connection with practice!
§  Handle concurrency aspects only!

§  Practice of concurrent programming!
§  Little influenced by above!
§  Low-level mechanisms still predominant!

§  In the course, we look at both theoretical and practical
approaches to concurrency!

10

Recommended textbooks
§  Mordechai Ben-Ari. Principles of Concurrent and Distributed

Programming. Prentice Hall, 2006!
§  Maurice Herlihy and Nir Shavit. The Art of Multiprocessor

Programming. Morgan Kaufmann, 2008!
§  Gregory R. Andrews. Foundations of Multithreaded, Parallel,

and Distributed Programming. Addison Wesley, 1999!
§  Draft of a textbook for this course!

§  More literature recommendations: see individual lectures!

11

What is concurrency?

Origins of concurrency in computing
§  Concurrency is not a new topic but one most programmers

have been able to avoid!
§  Previously perceived as a very specialized topic!

§  Systems programming
§  Databases!
§  High-performance computing!

13

Multiprocessing
§  Many of today’s computations can take advantage of multiple

processing units (multi-core processors)!

!

§  Multiprocessing: the use of more than one processing unit in a
system!

•  Execution of processes is said to be parallel, as they are
running at the same time!

Process 1! CPU 1!

Process 2! CPU 2!
Instructions!

14

Multitasking/multithreading
§  Even on systems with a single processing unit we may give

the illusion of that several programs run at once!

§  Multitasking/multithreading: the operating system switches
between the execution of different tasks/threads!

•  Execution of processes is said to be interleaved, as all are in
progress, but only one is running at a time!

Process 1!

CPU!

Process 2!

Instructions!

15

Concurrency ≠ Parallelism
§  Both multiprocessing and multitasking are examples of

concurrent computation!
§  The execution of processes is said to be concurrent if it is

either parallel or interleaved!
§  In this terminology, parallelism is a form of concurrency!

§  In programming, the terms are often used to emphasize the
type of problem they solve!
§  Concurrent programming: nondeterministic composition of

independently executing processes!
§  Parallel programming: efficient execution of a deterministic

computation on multiple processing units!

16

Operating system processes
§  How are processes implemented in an operating system?!
§  Structure of a typical process:!

§  Process identifier: unique ID of a process.!
§  Process state: current activity of a process.!
§  Process context: program counter, register values.!
§  Memory: program text, global data, stack, and heap.!

Process ID!

Code! Global data!

Register!
values!

Stack!
Heap!

Program!
counter!

17

The scheduler
§  A system program called the scheduler controls which

processes are running!
§  The scheduler sets the process states:!

§  new: being created!
§  running: instructions are being executed!
§  blocked: currently waiting for an event!
§  ready: ready to be executed, but not assigned to a processor!
§  terminated: finished executing!

blocked	

running	 ready	

Context switch!

new	 terminated	

18

Blocked processes
§  A process can get into state blocked by executing special

program instructions (synchronization primitives)!
§  When blocked, a process cannot be selected for execution!
§  A process gets unblocked by external events which set its

state to ready again!

19

The context switch
§  The swapping of processes on a processing unit by the

scheduler is called the context switch!

!
§  Scheduler actions when switching processes P1 and P2:!

P1.state	 :=	 ready	
//	 Save	 register	 values	 as	 P1's	 context	 in	 memory	
//	 Use	 context	 of	 P2	 to	 set	 register	 values	
P2.state	 :=	 running	

CPU!Registers!

P1!
Context!

P2!
Context!

20

Threads
§  Make programs concurrent by associating them with threads!
§  A thread is a part of an operating system process!
§  Private components!

§  Thread identifier!
§  Thread state!
§  Thread context!
§  Memory: only stack!

§  Shared components!
§  Program text!
§  Global data!
§  Heap !

Process ID!

Code! Global data!

Register!
values!

Thread ID1! Thread ID3!Thread ID2!

Register!
values!

Register!
values!

Stack! Stack! Stack!

Heap!

Program!
counter!

Program!
counter!

Program!
counter!

21

Expressing concurrency

Example: Java Threads
§  How to associate computations with threads in Java? !

§  Inherit from Thread, or !
§  Implement the Runnable interface!

class	 Worker	 implements	 Runnable	 {	
	 	 private	 int	 input;	
	 	 private	 int	 result;	
	 	 	
	 	 public	 Worker(int	 i)	 {	
	 	 	 	 input	 =	 i;	
	 	 }	
	 	 public	 void	 run()	 {	
	 	 	 	 //	 computation	
	 	 }	
	 	 public	 int	 getResult()	 {	
	 	 	 	 return	 result;	
	 	 }	
}	

void	 compute()	 {	
	 	 Worker	 w1	 =	 new	 Worker(23);	
	 	 Worker	 w2	 =	 new	 Worker(42);	
	 	 	
	 	 Thread	 t1	 =	 new	 Thread(w1);	
	 	 Thread	 t2	 =	 new	 Thread(w2);	
	 	 	
	 	 t1.start();	
	 	 t2.start();	
}	

23

Abstract notation
§  A program which at runtime gives rise to a process containing

multiple threads is called a concurrent program!
§  How to specify threads? Every programming language

provides a different syntax!
§  We use an abstract notation for concurrent programs!
!

x	 :=	 0	

P1	 P2	

1	
2	

x	 :=	 0	
x	 :=	 x	 +	 1	

1	 x	 :=	 2	
	

Initialization of global variables!
Thread ID!

Line numbers! Code of concurrently
executing threads!

24

Execution sequences

§  Execution can give rise to this execution sequence!

§  Is this the only possible execution sequence?!

x	 :=	 0	

P1	 P2	

1	
2	

x	 :=	 0	
x	 :=	 x	 +	 1	

1	 x	 :=	 2	
	

P1	 1	 x	 :=	 0	 x	 =	 0	

P2	 1	 x	 :=	 2	 x	 =	 2	

P1	 2	 x	 :=	 x	 +	 1	 x	 =	 3	

Variable values after
execution of the code

on the line!

Instruction executed
with Thread ID and

line number!

25

Benefits and challenges of
concurrency

Why concurrency?
§  Responsiveness !

§  GUI programming!
§  Network programming!
§  Communicating with multiple hardware devices!

§  Program structuring!
§  Handle nondeterministic events in a modular way!
§  Model concurrency in the real world!

§  Performance!
§  Speeding up computations!

27

The end of Moore‘s Law as we knew it

Clock speed!

Transistor
density!

Source: Intel!
28

Why do we care?
§  The “end of Moore’s law as we knew it” has important

implications on the software construction process!
§  Computing is taking an irreversible step toward parallel

architectures!
§  Hardware construction of ever faster sequential CPUs has hit

physical limits!
§  Clock speed no longer increases for every new processor

generation!
§  Moore’s Law expresses itself as exponentially increasing number of

processing cores per chip!

§  If we want programs to run faster on the next processor
generation, the software must exploit more concurrency!

29

Amdahl’s Law

Parallel part!

Sequential part!
Number of
processors!

1!

1 - p! + (p / n)!
speedup =!

old_execution_time!
new_execution_time!

speedup =!

% parallelizable!

§  We go from 1 processor to n processors. What gain may we
expect?!

§  Amdahl’s law severely limits our hopes!!
§  Define gain as:!

§  Not everything can be parallelized! !

30

Amdahl’s law: Example (1)
§  Assume 10 processing units. How close are we to a 10-fold

speedup?!
§  60% concurrent, 40% sequential:!

§  80% concurrent, 20% sequential:!

1!

1 – 0.6! + (0.6 / 10)!
speedup =! = 2.17!

1!

1 – 0.8! + (0.8 / 10)!
speedup =! = 3.57!

31

Amdahl’s law: Example (2)

§  90% concurrent, 10% sequential:!

!

§  99% concurrent, 1% sequential:!

1!

1 – 0.9! + (0.9 / 10)!
speedup =! = 5.26!

1!

1 – 0.99! + (0.99 / 10)!
speedup =! = 9.17!

32

Types of concurrent computation

Types of parallel computation
§  Flynn’s taxonomy: classification of computer architectures!
§  Considers relationships of instruction streams to data streams!

Single Instruction Multiple Instruction
Single Data SISD!

Multiple Data SIMD! MIMD!

SISD
No parallelism !
(uniprocessor)!

SIMD
Vector processor!

GPU!

MIMD
Multiprocessing!

(predominant today)!

34

MIMD variants
§  SPMD (Single Program Multiple Data)!

§  All processors run the same program, but at independent speeds!
§  No lockstep as in SIMD!

§  MPMD (Multiple Program Multiple Data)!
§  Often manager/worker strategy: manager distributes tasks, workers

return result to manager!

35

Shared memory model
§  All processors share a common memory!
§  Shared-memory communication!

Processor1!

Memory!

Processor2! Processorn!
. . . !

36

Distributed memory model
§  Each processor has own local memory, inaccessible to others!
§  Message-passing communication !
§  Common for SPMD architecture!

Processor1!

Memory1!

Processor2!

Memory2!

Processorn!

Memoryn!

. . . !

message passing!

37

