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Data races



Abstract notation (Recap)
§  A program which at runtime gives rise to a process containing 

multiple threads is called a concurrent program!
§  How to specify threads? Every programming language 

provides a different syntax!
§  We use an abstract notation for concurrent programs!
!

x	
  :=	
  0	
  

P1	
   P2	
  

1	
  
2	
  

x	
  :=	
  0	
  
x	
  :=	
  x	
  +	
  1	
  

1	
   x	
  :=	
  2	
  
	
  

Initialization of global variables!
Thread ID!

Line numbers! Code of concurrently 
executing threads!
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Execution sequences

!
§  Considering all interleavings, execution can give rise to the 

following execution sequences:!

§  The computation is nondeterministic: depending on the 
scheduling, x may have the final value 1, 2, or 3	
  

x	
  :=	
  0	
  

P1	
   P2	
  

1	
  
2	
  

x	
  :=	
  0	
  
x	
  :=	
  x	
  +	
  1	
  

1	
   x	
  :=	
  2	
  
	
  

P2	
   1	
   x	
  :=	
  2	
   x	
  =	
  2	
  

P1	
   1	
   x	
  :=	
  0	
   x	
  =	
  0	
  

P1	
   2	
   x	
  :=	
  x	
  +	
  1	
   x	
  =	
  1	
  

P1	
   1	
   x	
  :=	
  0	
   x	
  =	
  0	
  

P1	
   2	
   x	
  :=	
  x	
  +	
  1	
   x	
  =	
  1	
  

P2	
   1	
   x	
  :=	
  2	
   x	
  =	
  2	
  

P1	
   1 x	
  :=	
  0	
   x	
  =	
  0	
  

P2	
   1 x	
  :=	
  2	
   x	
  =	
  2	
  

P1	
   2 x	
  :=	
  x	
  +	
  1	
   x	
  =	
  3	
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Atomicity (1)
§  An instruction (or sequence of instructions) is atomic if its 

execution cannot be interleaved with other instructions before 
its completion!

§  Note that the syntax may sometimes be misleading of the 
actual atomicity of an instruction!

§  For example, the instruction!
!

x	
  :=	
  x	
  +	
  1	
  
	
  

is on many systems executed as:!
!

	
   	
  temp	
  :=	
  x 	
   	
   	
  -­‐-­‐	
  LOAD	
  R0,	
  x	
  
	
   	
  temp	
  :=	
  temp	
  +	
  1 	
  -­‐-­‐	
  ADD	
  R0,	
  #1	
  
	
   	
  x	
  :=	
  temp 	
   	
   	
  -­‐-­‐	
  STORE	
  R0,	
  x	
  

§  Convention: in our notation for concurrent programs, every 
numbered line can be executed atomically!
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Atomicity (2)
§  To reflect the different assumption on atomicity, the 

concurrent program is restated:!

§  One of the possible execution sequences:!

x	
  :=	
  0	
  

P1	
   P2	
  

1	
  
2	
  
3	
  
4	
  

x	
  :=	
  0	
  
temp	
  :=	
  x	
  
temp	
  :=	
  temp	
  +	
  1	
  
x	
  :=	
  temp	
  

1	
   x	
  :=	
  2	
  
	
  

P1	
   1	
   x	
  :=	
  0	
   x	
  =	
  0	
  

P1	
   2	
   temp	
  :=	
  x	
   x	
  =	
  0,	
  temp	
  =	
  0	
  

P2	
   1	
   x	
  :=	
  2	
   x	
  =	
  2,	
  temp	
  =	
  0	
  

P1	
   3	
   temp	
  :=	
  temp	
  +	
  1	
   x	
  =	
  2,	
  temp	
  =	
  1	
  

P1	
   4	
   x	
  :=	
  temp	
   x	
  =	
  1,	
  temp	
  =	
  1	
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Race conditions
•  If threads are completely independent, concurrency is easy!
•  Much more often threads interfere with each other, for 

example by accessing and modifying the same variables !
•  The situation that the result of a concurrent execution is 

dependent on the nondeterministic interleaving is called a 
race condition!

•  Race condition errors can stay hidden for a long time and are 
difficult to find by testing (“Heisenbugs”)!
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Data race
§  A data race occurs when two concurrent threads access a 

shared memory location and when!
§  at least one access is a write and!
§  the relative ordering of the two accesses is not enforced!

§  Not every race condition is a data race!
§  The term race condition applies also in situations where there is no 

memory access (races in file system, network access)!

§  Not every data race is a race condition!
§  There can be data races in memory locations that don’t affect the 

result of the computation (that you care about)!
§  Sometimes also called benign data race!
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Example: Java Threads (Recap)
§  How to associate computations with threads in Java? !

§  Inherit from Thread, or !
§  Implement the Runnable interface!

class	
  Worker	
  implements	
  Runnable	
  {	
  
	
  	
  private	
  int	
  input;	
  
	
  	
  private	
  int	
  result;	
  
	
  	
  	
  
	
  	
  public	
  Worker(int	
  i)	
  {	
  
	
  	
  	
  	
  input	
  =	
  i;	
  
	
  	
  }	
  
	
  	
  public	
  void	
  run()	
  {	
  
	
  	
  	
  	
  //	
  computation	
  
	
  	
  }	
  
	
  	
  public	
  int	
  getResult()	
  {	
  
	
  	
  	
  	
  return	
  result;	
  
	
  	
  }	
  
}	
  

void	
  compute()	
  {	
  
	
  	
  Worker	
  w1	
  =	
  new	
  Worker(23);	
  
	
  	
  Worker	
  w2	
  =	
  new	
  Worker(42);	
  
	
  	
  	
  
	
  	
  Thread	
  t1	
  =	
  new	
  Thread(w1);	
  
	
  	
  Thread	
  t2	
  =	
  new	
  Thread(w2);	
  
	
  	
  	
  
	
  	
  t1.start();	
  
	
  	
  t2.start();	
  
}	
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Example: Java Threads
§  Often the final results of thread executions need be combined!

§  We have to wait for both threads to be finished!

§  The join() method, when invoked on a thread t causes the 
caller to wait until t is finished!

§  This is a first example of thread synchronization!

return	
  worker1.getResult()	
  +	
  worker2.getResult();	
  

t1.start();	
  
t2.start();	
  
t1.join();	
  
t2.join();	
  
return	
  worker1.getResult()	
  +	
  worker2.getResult();	
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Temporal logic



Interleaving vs. true-concurrency semantics
§  To describe concurrent behavior, we need a model!
§  Interleaving semantics!

§  Assumption that parallel behavior can be represented by the set of 
all non-deterministic interleavings!

§  Imposes total ordering on the events!

§  True-concurrency semantics!
§  Assumption that true parallel behaviors exist!
§  Imposes only partial ordering!
§  → See lecture on Petri nets!
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Interleaving semantics
§  The interleaving semantics provides a good model for 

concurrent programs, in particular it can describe:!
§  Multitasking: the interleaving is performed by the scheduler!
§  Multiprocessing: the interleaving is performed by the hardware!

§  By considering all possible interleavings, we can ensure that a 
program runs correctly in all possible scenarios!

§  Downside: The number of possible interleavings grows 
exponentially in the number of concurrent processes (state 
space explosion problem)!
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Transition systems
§  A formal model that allows us to express concurrent 

computation are transition systems!
§  They consist of states and transitions between them!
§  A state is labeled with atomic propositions, which express 

concepts such as:!
§  P2⊳2    (the program pointer of P2 points to 2)!
§  x = 6    (the value of variable x is 6)!

§  There is a transition between two states if one state can be 
reached from the other by executing an atomic instruction!
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Example: Transition system
§  Transition system for the simple concurrent program!

P1⊳1	
  
P2⊳1	
  
x	
  =	
  0	
  

P1⊳2	
  
P2⊳1	
  
x	
  =	
  0	
  

P1⊳1	
  
x	
  =	
  2	
  

P1⊳2	
  
x	
  =	
  0	
  

x	
  =	
  1	
  

P2⊳1	
  
x	
  =	
  1	
  

P1⊳2	
  
x	
  =	
  2	
  

x	
  =	
  3	
  x	
  =	
  2	
  

x	
  :=	
  0	
  

P1	
   P2	
  

1	
  
2	
  

x	
  :=	
  0	
  
x	
  :=	
  x	
  +	
  1	
  

1	
   x	
  :=	
  2	
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Transition systems, formally
§  Let A be a set of atomic propositions !
§  A transition system T is a triple (S, →, L) where!

§  S is the set of states!
§  → ⊆ S x S is the transition relation!
§   L : S -> 2A is the labeling function!

§  The transition relation has the additional property that for 
every s ∈ S there is an s' ∈ S such that s → s’!
§  A transition system with this property is also called Kripke structure!
§  Makes it possible to always construct an infinite path!

§  A path is an infinite sequence of states π = s1, s2, s3,… such 
that for every i ≥ 1 we have si → si+1!

§  We write π[i] for the subsequence si, si+1, si+2, ...!
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Temporal logic
§  For any concurrent program, its transition system represents 

all of its behavior!
§  We are typically interested in specific aspects of this behavior!

§  "the value of variable x will never be negative"!
§  "the program pointer of P2 will eventually point to 9”!

§  Temporal logics allow us to express such properties formally!
§  We will study linear-time temporal logic (LTL)!
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Syntax of LTL
§  The syntax of LTL formulas is given by the following grammar!

ϕ ::= T | p | ¬ϕ | ϕ ∧ ϕ | ϕ v ϕ | ϕ → ϕ | G ϕ | F ϕ | ϕ U ϕ | X ϕ !

§  Informal semantics of the temporal operators!
§  G ϕ Globally (in all future states) ϕ holds!
§  F ϕ in some Future state, ϕ holds!
§  ϕ1 U ϕ2 in some future state ϕ2 holds, and at least Until then, !

ϕ1 holds!
§  X ϕ in the Next state, ϕ holds!

§  Sometimes we write !
§  ︎ instead of G, and !
§  ◇ instead of F!

propositional logic!
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Semantics of LTL
§  The meaning of formulas is defined by the satisfaction !

relation ⊨ for a path π = s1, s2, s3, …!
π ⊨ T!
π ⊨ p iff p ∈ L(s1)!
π ⊨ ¬ϕ iff π ⊨ ϕ does not hold!
π ⊨ ϕ1 ∧ ϕ2 iff π ⊨ ϕ1 and π ⊨ ϕ2 !

π ⊨ G ϕ iff for all i ≥ 1, π[i] ⊨ ϕ !
π ⊨ F ϕ iff exists i ≥ 1, such that π[i] ⊨ ϕ !
π ⊨ ϕ1 U ϕ2 iff exists i ≥ 1, such that π[i] ⊨ ϕ2 and !

for all 1 ≤ j < i, π[j] ⊨ ϕ1!

π ⊨ X ϕ iff π[2] ⊨ ϕ !
§  If we write s ⊨ ϕ we mean that for every path π starting in s we 

have π ⊨ ϕ!
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Example: LTL formulas
§  “the value of variable x will never be negative”!

!

G ¬(x < 0)!
!

§  “whenever the program pointer of P points to 3, it will 
eventually point to 9"!

G (P⊳3 → F P⊳9)!
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Example: Semantics of LTL
§  Consider the following transition system:!

§  Which properties hold?!
§  s1 ⊨ p ⋀ q!
§  s1 ⊨ G ¬(p ⋀ r)!
§  s1 ⊨ X q!
§  s1 ⊨ F (¬q ⋀ r) -> F G r!

p, q!
s1!

r!
s3!

q, r!
s2!
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Equivalence of formulas
§  Two formulas φ and ψ are equivalent if for all transition 

systems and all paths π!
§  π ⊨ φ   iff    π ⊨ ψ!

§  Some equivalent formulas:!
§  F φ ≡ T U φ!
§  G φ ≡ ¬ F ¬φ!

§  Hence both F and G can be expressed by U!
§  X cannot be expressed in terms of the others!
§  X and U form an adequate set of temporal connectives, i.e. all 

temporal operators can be defined in terms of these!
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Safety and liveness properties (1)
§  There are two important types of formal properties in 

concurrent computation!
§  Safety properties!

§  Informally: “nothing bad ever happens”!
§  Properties whose violation always have a finite witness!
§  “if something bad happens on an infinite path, then it happens 

already on some finite prefix of the path”!

§  Liveness properties!
§  Informally: “something good eventually happens”!
§  Properties whose violation never have a finite witness!
§  “no matter what happens on a finite path, something good could still 

happen later”!
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Safety and liveness properties (2)
§  For sequential programs!

§  Safety: the program will never produce a wrong result (“partial 
correctness”)!

§  Liveness: the program will produce a result (“termination”)!

§  Liveness properties complement safety properties!
§  A safety property can be easily fulfilled by doing nothing!
§  Liveness properties allow us to specify some progress!
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Example: Safety and liveness
§  Examples!

§  “the value of variable x will never be negative” !
§  “whenever the program pointer of P points to 3, it will eventually 

point to 9” !
§  “it cannot happen that the program pointers of both processes 

points to location l simultaneously”!
§  “the program is deadlock-free”!
§  “the program terminates in 42 steps”!
§  “the program eventually terminates” !
§  “P1 can only continue once P2 has arrived at location l”!

§  Many safety properties are invariants, expressible with the LTL 
formula G ¬ϕ!

§  Liveness properties are ofte expressed in LTL by G (ϕ -> F ψ)!
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– safety!

– liveness!

– safety!
– safety!

– safety!

– safety!
– liveness!



Model checking
§  Model checking is the problem of automatically checking 

whether a model of a system meets a given specification!
§  In our setting!

§  the specification is an LTL formula φ,!
§  the model is a transition system T, and!
§  model checking amounts to evaluating T ⊨ φ !

§  The model is often described with a special-purpose 
language!

§  We do not discuss model-checking algorithms in this course!
→ See the Software Verification lecture in the Fall!

§  Exercise class: hands-on experience with the model checker 
SPIN (properties in LTL + Promela modeling language)!

26




Deadlock and starvation



Process synchronization
§  In order to avoid race conditions, processes must synchronize 

with each other!
§  Synchronization describes the idea that processes 

communicate with each other in order to agree on a sequence 
of actions!

§  How can processes communicate?!

28




Process communication
§  There are two main means of process communication!
§  Shared-memory communication!

§  Processes communicate by reading and writing to shared sections 
of memory!

§  Used predominantly in shared-memory systems!

§  Message-passing communication!
§  Processes communicate by sending messages to each other!
§  Used predominantly in distributed-memory systems!
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Deadlocks
§  The ability to hold resources exclusively is central to providing 

process synchronization for resource access!
§  Unfortunately, it brings about other problems!
§  A deadlock is the situation where a group of processes blocks 

forever because each of the processes is waiting for 
resources which are held by another process in the group!

§  An illustrative example of deadlock is the dining philosophers 
problem!
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The dining philosophers problem
§  N philosophers are seated around a table and in between 

each pair of philosophers there is a single fork!
§  In order to eat, each philosopher needs to pick up both forks 

which are lying to his sides, and thus philosophers sitting next 
to each other can never eat at the same tim!

§  A philosopher only engages in two activities: thinking and 
eating!

§  The problem consist of devising an algorithm such that the 
following properties are ensured!
§  Each fork is held by one!

philosopher at a time!
§  Philosophers don't deadlock!
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Dining philosophers: solution attempt 1
§  Each philosopher first picks up the right fork, then the left fork, 

and then starts eating; after having eaten, the philosopher 
puts down the left fork, then the right one!

§  The philosophers can deadlock!
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The Coffman conditions
§  There are a number of necessary conditions for deadlock to 

occur!
1.  Mutual exclusion: processes have exclusive control of the 

resources they require!
2.  Hold and wait: processes already holding resources may 

request new resources!
3.  No preemption: resources cannot be forcibly removed from a 

process holding it!
4.  Circular wait: two or more processes form a circular chain 

where each process waits for a resource that the next process 
in the chain holds!

§  Attempts at avoiding deadlocks typically try to break one of 
these conditions!
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Dining philosophers: solution attempt 2
§  Each philosopher picks up right fork and the left fork at the 

same time, and then starts eating; after having eaten, the 
philosopher puts them both back down!

§  This solution is indeed deadlock-free: the hold-and-wait 
condition is broken, as both forks are picked up atomically!

§  However, a philosopher could starve if always one of the 
philosophers to his left or right is eating!
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Starvation
§  Even if no deadlock occurs, it may still happen that some 

processes are not treated fairly!
§  The situation that processes are perpetually denied access to 

resources is called starvation!
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Fairness
§  To prove freedom from starvation or other liveness properties, 

fairness assumptions are sometimes needed!
§  Fairness is concerned with the resolution of nondeterminism !
§  Weak fairness: if an action is continuously enabled, i.e. never 

temporarily disabled, then it has to be executed infinitely often!
§  Strong fairness: if an action is infinitely often enabled, but not 

necessarily always, then it has to be executed infinitely often!
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Dining philosophers: solution attempt 3
§  The forks are numbered 1 to 5. A philosopher always has to 

pick up his lower-numbered fork first!
§  This solution is also deadlock-free as the circular-wait 

condition is broken!
§  Defining a partial order on resources and respecting that 

order is a common measure to avoid deadlocks!
!
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Dining philosophers: solution attempt 4
§  In order to pick up forks, a philosopher must ask a waiter. The 

waiter only gives permission to one philosopher at a time!
§  Another deadlock-free solution, which is however undesirable 

as the amount of concurrency is reduced (it sequentializes the 
eating)!
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