Concepts of Concurrent Computation

Spring 2015

Lecture 3: Synchronisation Algorithms

Sebastian Nanz
Chris Poskitt

Chair of e s
@So:tlvrv:re Engineering mzurICh

It's easy to make mistakes

® concurrent threads often share resources
® we want to avoid race conditions

® can be avoided through locks, but:
=> non-trivial
=> may introduce deadlock, starvation, ...

Solutions, problems, and more solutions

® many early attempts to solve the problem of

exclusive resource access
=> many proposed solutions still had deficiencies

® we will study some of these classical

synchronisation algorithms
=> learn from their shortcomings to better understand

the problem

Today’s lecture

define the mutual exclusion problem
=> common framework for evaluating solutions to the
problem of common resource access

consider some solutions to the problem and their
properties

apply techniques for proving properties of such
solutions

Next on the agenda

|. mutual exclusion problem
2. towards a solution
3. Peterson’s algorithm

4. Bakery algorithm

Mutual exclusion

® mutual exclusion is a form of synchronisation used
to avoid the simultaneous use of a shared resource

® the part of a program that accesses a shared
resource is called a critical section

Mutual exclusion

® mutual exclusion is a form of synchronisation used
to avoid the simultaneous use of a shared resource

® the part of a program that accesses a shared
resource is called a critical section

while true loop
entry protocol
critical section
exit protocol
non-critical section
end

Mutual exclusion

® mutual exclusion is a form of synchronisation used
to avoid the simultaneous use of a shared resource

® the part of a program that accesses a shared
resource is called a critical section

end

while true loop

entry protocol s

critical section
exit protocol
non-critical section

r

mutual exclusion problem
concerns getting these right

Mutual exclusion problem

® given n processes of the form:

while true loop

end

entry protocol
critical section
exit protocol
non-critical section

® design entry and exit protocols to ensure:

|. mutual exclusion

2. freedom from deadlock

3. freedom from starvation

Mutual exclusion problem

® given n processes of the form:

while true loop

end

entry protocol
critical section
exit protocol
non-critical section

® design entry and exit protocols to ensure:

s

at most one process ever

| mutual exclusion in its critical section

2. freedom from deadlock

3. freedom from starvation

Mutual exclusion problem

while true loop

® given n processes of the form: entry protocol
critical section
exit protocol
non-critical section

end

® design entry and exit protocols to ensure:

s

at most one process ever
| mutual exclusion in its critical section

(. .
if more than one process attempting

2 freedom from deadlock | to enter their critical sections, one
will eventually succeed

3. freedom from starvation

Mutual exclusion problem

while true loop

® given n processes of the form: entry protocol
critical section
exit protocol
non-critical section

end

® design entry and exit protocols to ensure:

s

at most one process ever
| mutual exclusion in its critical section

(. .
if more than one process attempting

2 freedom from deadlock | to enter their critical sections, one
will eventually succeed

(. . . :
if @ process is trying to enter its

critical section, it will eventually

succeed

3. freedom from starvation

Assumptions and considerations

processes communicate only via atomic (i.e.
indivisible) steps

assume that if a process enters its critical section,
it will eventually exit from it

a process could terminate (or loop forever) in its
non-critical section

shared resources will not be accessed outside of
these processes

L ocks

® synchronisation mechanisms based on the ideas of
entry- and exit-protocols are called locks

® typically implemented as a pair of functions:

lock unlock
do do
entry protocol exit protocol
end end

Next on the agenda

|. mutual exclusion problem J

2. towards a solution
3. Peterson’s algorithm

4. Bakery algorithm

Towards a solution

® the mutual exclusion problem is deceptively tricky,
and took a while to become well-understood

® many incorrect solutions published in the 1960s
=> we will work along a series of failing attempts

until establishing a solution

® first, restrict ourselves to two processes (n = 2)

Brief aside: busy waiting

® we will use the following pseudocode:

await b

which is equivalent to:

while not b loop end

Brief aside: busy waiting

® we will use the following pseudocode:

await b

which is equivalent to:

while not b loop end

l busy waiting '

Brief aside: busy waiting

® we will use the following pseudocode:

await b

which is equivalent to:

while not b loop end

busv waitin inefficient in multitasking systems
4 & ! ..but makes sense if waiting times

shorter than context switching

Solution attempt no. |

® idea: use two variables enter| and enter?;if enteri
is true, it means that process Pi intends to enter its
critical section

enterl := false
enter2 := false
P1 P2

uviDh wWwpN PR
Ui h WN R

20

Solution attempt no. |

® idea: use two variables enter| and enter?;if enteri
is true, it means that process Pi intends to enter its
critical section

enterl := false
enter2 := false
P1 P2

while true loop

1 await not enter?2 1
2 enterl := true 2
3 critical section 3
4 enterl := false 4
5 5

non-critical section
end

21

Solution attempt no. |

® idea: use two variables enter| and enter?;if enteri
is true, it means that process Pi intends to enter its
critical section

enterl := false

enter2 := false

P1 P2
while true loop while true loop

1 await not enter2 1 awalit not enterl

2 enterl := true 2 enter2 := true

3 critical section 3 critical section

4 enterl := false 4 enter2 := false

5 non-critical section |5 non-critical section
end end

22

Solution attempt no. |

® idea: use two variables enter| and enter?;if enteri
is true, it means that process Pi intends to enter its
critical section

enterl := false

enter2 := false

P1 P2
while true loop while true loop

1 await not enter2 1 awalit not enterl

2 enterl := true 2 enter2 := true

3 critical section 3 critical section

4 enterl := false 4 enter2 := false

5 non-critical section |5 non-critical section
end end

incorrect: does not enforce mutual exclusion

23

Solution attempt no. | is incorrect

® the two processes can end up in their critical
sections at the same time:

P2 |1 |await not enterl
P1 |1 |await not enter2
P1 2 |enterl := true
P2 2 |enter2 := true
P2 |3 |critical section
P1 |3 |critical section

24

Solution attempt no. | is incorrect

® the two processes can end up in their critical
sections at the same time:

P2 |1 |await not enterl
P1 |1 |await not enter2
P1 2 |enterl := true
P2 2 |enter2 := true
P2 |3 |critical section
P1 |3 |critical section

the “awaits” guard the critical sections!
pberhaps set enter| and enter2 before?

25

Solution attempt no. 2

enterl := false
enter2 := false
P1 P2

Ui WIN R

while true loop

end

enterl := true

await not enter2
critical section
enterl := false
non-critical section

v~ WDN PR

while true loop
enter2 := true
awalit not enterl
critical section
enter2 := false
non-critical section
end

26

Solution attempt no. 2

enterl := false
enter2 := false
P1 P2

Ui WIN R

while true loop

end

enterl := true

await not enter2
critical section
enterl := false
non-critical section

v~ WDN PR

while true loop
enter2 := true
awalit not enterl
critical section
enter2 := false
non-critical section
end

mutual exclusion?

27

Solution attempt no. 2

enterl := false
enter2 := false
P1 P2

Ui WIN R

while true loop

end

enterl := true

await not enter2
critical section
enterl := false
non-critical section

v~ WDN PR

while true loop
enter2 := true
awalit not enterl
critical section
enter2 := false
non-critical section
end

mutual exclusion?

28

Solution attempt no. 2

enterl := false
enter2 := false
P1 P2

vih WdN PR

while true loop

end

enterl := true
await not enter2
critical section
enterl := false
non-critical section

v~ WDN PR

while true loop

end

enter2 := true

awalit not enterl
critical section
enter2 := false
hon-critical section

mutual exclusion? J freedom from deadlock?

29

Solution attempt no. 2

enterl := false
enter2 := false
P1 P2

vih WdN PR

while true loop

end

enterl := true
await not enter2
critical section
enterl := false
non-critical section

v~ WDN PR

while true loop

end

enter2 := true

awalit not enterl
critical section
enter2 := false
nhon-critical section

mutual exclusion? J freedom from deadlock?

30

Solution attempt no. 2 is incorrect

® the two processes can deadlock:

P1 1 |enterl := true
P2 1 |enter2 := true
P2 |2 J|await not enterl
P1 |2 |await not enter2

31

Solution attempt no. 3

® try something different!

namely, a single variable turn that has value i if it's
Pi's turn to enter the critical section

turn := 1 or turn := 2

P1 P2
while true loop while true loop

1 await turn = 1 1 await turn = 2

2 critical section 2 critical section

3 turn = 2 3 turn = 1

4 non-critical section |4 non-critical section
end end

mutual exclusion? freedom from deadlock?

32

Solution attempt no. 3

® try something different!

namely, a single variable turn that has value i if it's
Pi's turn to enter the critical section

turn := 1 or turn := 2

P1 P2
while true loop while true loop

1 await turn = 1 1 await turn = 2

2 critical section 2 critical section

3 turn = 2 3 turn = 1

4 non-critical section |4 non-critical section
end end

mutual exclusion? J freedom from deadlock?

33

Is attempt no. 3 really correct!

® |et’s try to prove it

® draw the related transition system; states are
labeled with triples (i, j, k): program pointer values
Pl=iand P2=j,and value of the variable turn = k.

34

Is attempt no. 3 really correct!

® |et’s try to prove it

® draw the related transition system; states are
labeled with triples (i, j, k): program pointer values
Pl=iand P2=j,and value of the variable turn = k.

@@g&i&w@ ()
@\@-®-®@ ()=

0
}o

Is attempt no. 3 really correct!

® solution attempt 3 satisfies mutual exclusion

proof. Mutual exclusion expressed as LTL formula:

G -(Pl=2 A P2=2)

CEDSOS R

<

i

y

4

0
)

Is attempt no. 3 really correct!

® solution attempt 3 satisfies mutual exclusion

proof. Mutual exclusion expressed as LTL formula:
G 7(Pl=2 A P2=2)

Easy to see that this formula holds, as there
are no states of the form (2, 2, k).

[

@l
DSC

i

e
a2 (s ()12

i

Is attempt no. 3 really correct!

® solution attempt 3 is free of deadlock

proof. Deadlock freedom expressed as LTL formula:
G ((Pl=1 AP2=1)->F (Pl=2 Vv P2=2))

CEDSOS O

<

i

y

4

0
)

Is attempt no. 3 really correct!

® solution attempt 3 is free of deadlock

proof. Deadlock freedom expressed as LTL formula:
G ((Pl=1 AP2=1)->F (Pl=2 Vv P2=2))

We have to examine the states (1, I, 1) and (1, I, 2);in both
cases, one of the processes is able to enter its critical section.

OO OO
OSCECATRORORCED

Is attempt no. 3 really correct!

® finally, what about freedom from starvation?

Expressed as LTL formula (for i = 1,2):

G (Pi= | -> F (Pi=2))

Is attempt no. 3 really correct!

® finally, what about freedom from starvation? X

Expressed as LTL formula (for i = 1,2):

G (Pi= | -> F (Pi=2))

() o) o)
141 ‘ﬁ@\@@ @ Y what if P2 terminates in its non-

critical section? Then Pl will starve!

Next on the agenda

|. mutual exclusion problem J
2. towards a solution J

3. Peterson’s algorithm

4. Bakery algorithm

42

Peterson’s algorithm (two processes)

® combine attempts no. 2 and 3; if both processes have
set their enter-flag to true, then the value of turn
decides who may enter the critical section

enterl := false
enter2 := false
turn := 1 or turn := 2
P1 P2
while true loop while true loop
1 enterl := true 1 enter2 := true
2 turn = 2 2 turn =1
3 await not enter2 or turn = 1|3 await not enterl or turn = 2
4 critical section 4 critical section
5 enterl := false 5 enter2 := false
6 non-critical section 6 non-critical section

end

end

Peterson’s algorithm satisfies mutual exclusion

® assume that both Pl and P2 are in their critical section
and that Pl entered before P2

® when Pl entered the critical section we have enter| =
true, and P2 must thus have seen turn = 2 upon entering
its critical section

® P2 could not have executed line 2 after Pl entered, as this
sets turn = | and would have excluded P2, as Pl does not
change turn while being in the critical section

® however, P2 could not have executed line 2 before P|
entered either because then Pl would have seen enter?2 =
true and turn = |, although P2 should have seen turn = 2

® => contradiction!

Peterson’s algorithm is starvation free

® assume Pl is forced to wait in the entry protocol forever

® P2 can eventually do only one of three actions:

(1) be in its non-critical section: then enter?2 is false, thus allowing
Pl to enter.

(2) wait forever in its entry protocol: impossible because turn
cannot be both | and 2

(3) repeatedly cycle through its code: then P2 will set turn to | at
some point and never change it back

Peterson’s algorithm for n processes

enter[1l] := 0; ...; enter[n] :=
turn[1l] := 0; ...; turn[n - 1] :

0
= 0

P.

1

U1 B wWNPR

N O

for j =1 ton-1do
enter[i] := j
turn[j] = 1
await (for all k != 1
end
critical section
enter[i] := ©
non-critical section

: enter[k] < j) or turn[j] != 1

direct generalisation!

Peterson’s algorithm for n processes

every process has to go through n — | stages to reach the critical
section: variable j indicates the stage

enter|i]: stage the process P, is currently in

turn[j]: which process entered stage j last

waiting: P; waits if there are still processes at higher stages, or if
there are processes at the same stage unless P, is no longer the
last process to have entered this stage

idea for mutual exclusion proof: Stage:

at most n — j processes can have __mexnprocesses /1

Passed stage] => \ max. h-1 processes / 2

at most n—(n - |) = | processes \

can be in the critical section \ mx3 /[pop
\ max. 2 n-1

Next on the agenda

|. mutual exclusion problem /

2. towards a solution /
3. Peterson’s algorithm J

4. Bakery algorithm

48

Freedom

® freedom from starvation still allows that processes
may enter their critical sections before a certain,
already waiting process is allowed access

® we study an algorithm that has very strong fairness
guarantees

49

Short aside: bounded waiting

® bounded waiting: if a process is trying to enter its
critical section, then there is a bound on the
number of times any other process can enter its
critical section before the given process does so

® r-bounded waiting: If a process tries to enter its
critical section then it will be able to enter before
any other process is able to enter its critical
sectionr + | times

® first-come-first-served: 0-bounded waiting

50

Short aside: bounded waiting

starvation-freedom = deadlock-freedom

starvation-freedom = bounded waiting
bounded waiting #> starvation-freedom

e bounded waiting + deadlock-freedom

“.._ = starvation-freedom

51

Bakery algorithm

Bakery algorithm: first attempt

idea: ticket systems for customers, at any turn the
customer with the lowest number will be served

numberf(i]: ticket number drawn by a process Pi

waiting: until Pi has the lowest number currently
drawn

Bakery algorithm: first attempt

® idea: ticket systems for customers, at any turn the

customer with the lowest number will be served

® numberf(i]: ticket number drawn by a process Pi

® waiting: until Pi has the lowest number currently

drawn

number[1l] := 0; ...; number[n] := ©

P.

1

wNn BB

(U [SN

number[i] := 1 + max(number[1], ..., number[n])
for all j != 1 do

await number[j] = © or number[i] < number[j]
end
critical section
number[i] := ©
non-critical section

Bakery algorithm: first attempt

® idea: ticket systems for customers, at any turn the
customer with the lowest number will be served

® numberf(i]: ticket number drawn by a process Pi

® waiting: until Pi has the lowest number currently
drawn

number[1l] := 0; ...; number[n] := ©

> problem?

1

number[i] := 1 + max(number[1], ..., number[n])
for all j =1 do

await number[j] = © or number[i] < number[j]
end
critical section
number[i] := ©
6 |non-critical section

wNn BB

(U [SN

Bakery algorithm: first attempt

idea: ticket systems for customers, at any turn the

customer with the lowest number will be served

drawn

number[1l] := 0; ..

.3 number[n] := ©

P.

1

wNn BB

(U [SN

number[i] := max(number[1], ..., number[n])
for all j != 1 do
await number[j] = © or number[1l '

end

critical section
number[i] := ©
non-critical section

numberf(i]: ticket number drawn by a process Pi

waiting: until Pi has the lowest number currently

pbroblem?

atomic? if not,
deadlock
bossible

A fix?

replace the comparison number(i] < number(j] by
(number]i}], i) < (numberlj],)
the "less than" relation is defined in this case as

(a,b) <(c,d) if (a<c)or((a=c)and(b<d))

idea: if two ticket numbers turn out to be the same, the process
with the lower identifier gets precedence

A fix? Unfortunately not.

unfortunately, with the “fix”” we no longer have mutual exclusion:
Pl and P2 both compute the current maximum as 0

P2 assigns itself ticket number | (number[2] := |) and proceeds
into critical section

Pl assigns itself ticket number | (number[l] :
into critical section, because

(number[1],) < (number[2], 2)

|) and proceeds

(Correct) Bakery algorithm

® indicate with a flag if a process is currently
calculating its ticket number

number[1l] := ©; ...; number[n] := ©

choosing[1l] := false, ..., choosing[n] := false

P;

1 |choosing[i] := true

2 |number[i] := 1 + max(number[1l], ..., number[n])

3 |choosing[i] := false

4 |for all j != 1 do

5 await choosing[j] = false

6 await number[j] = @ or (number[i], i) < (number[j], Jj)
end

7 |critical section

8 |number[i] := ©

9 |non-critical section

)\

— doorway

— bakery

Some properties

® |emma |.If processes Pi and Pk are in the bakery
and Pi entered the bakery before Pk entered the
doorway, then number[i] < number[k].

® |emma 2. If process Pi is in its critical section and
process Pk is in the bakery then (numberfi], i) <
(number[k], k).

Correctness of the Bakery algorithm

® the Bakery algorithm satisfies mutual exclusion
proof. Follows from Lemma 2.

® the Bakery algorithm is deadlock-free

proof. Some waiting process P, has the minimum value of

(numberf(i], i) among all the processes in the bakery. This
process must eventually complete the for loop and enter the
critical section.

® the Bakery algorithm is first-come-first-served
proof. Follows from Lemmas | and 2.

Considerations

® drawback: values of the ticket numbers can grow unboundedly
=> two processes could alternatingly draw ticket numbers until the
maximum size of an integer on the system is reached

® size and number of shared memory locations is important
=> Peterson’s algorithm: 2n-1 registers (bounded by n)
=> Bakery algorithm: 2n registers (unbounded in size)
=> general lower bound: mutual exclusion problem for n processes
satisfying mutual exclusion and global progress needs to
use n shared one-bit registers

® algorithms assume memory access is atomic: may not be the case
=> Bakery algorithm can help: each memory location written by only
a single process
=> NB: later lecture will consider more complex atomic primitives

Next on the agenda

|. mutual exclusion problem /

2. towards a solution J
3. Peterson’s algorithm J

4. Bakery algorithm J

63

Summary

mutual exclusion problem is deceptively tricky

can be solved via locks, but must take care to avoid
introducing deadlock, starvation, unfairness

classical solutions: Peterson’s algorithm, Bakery
algorithm

coming weeks: more modern synchronisation
mechanisms to solve mutual exclusion

64

