Concepts of Concurrent Computation
Spring 2015

| ecture 6;: SCOQOP

Sebastian Nanz
Chris Poskitt

Chair of v
@Software Engineering ETH:zurich

What is SCOOP?

= An object-oriented programming model for concurrency:
Simple Concurrent Object-Oriented Programming

= (Goal: “reasonability” — the programmer’s ability to reason
about the execution of programs based only on their text

= As in sequential O-O programming, with contracts
= (Guarantee: freedom from data races

» Programmers don't have to explicitly manage locking: the
runtime of SCOOP handles it, according to their specifications

SCOOP design and development

First version described by Bertrand Meyer in a CACM article
(1993) and in chapter 32 of Object-Oriented Software
Construction, 29 edition, 1997

Prototype implementation at ETH Zurich (2005-2008)

Improvements and extensions of the model at ETH Zurich
(2009-today), in particular new runtime

Further development supported by an Grant from the
European Research Council (2012-2017)

= CME Project, more information at cme.ethz.ch

Production implementation at Eiffel Software, part of
EiffelStudio

Message-passing communication

= The communication between processes in SCOOP is based
ONn message-passing communication

» Communication is achieved by sending messages between
processes, in contrast to shared-memory communication

» Models of message-passing communication include the Actor
model and the m-calculus (see later lectures)

* The main distinction is between synchronous and
asynchronous message passing (see following slides)

Asynchronous message passing

Asynchronous: the sender sends a message and continues,
regardless of whether the message has been received

Requires buffer space

Analogy: Email

Process P1 Process P2
send
\(message
\ v
receive
v l

Synchronous message passing

« Synchronous: the sender blocks until the receiver is ready to
receive the message

* Analogy: Phone call

Process P1 Process P2
send
:
|
blocked ! M

> message [—> receive

v |

SCOOP: A message-passing model

= |ntuition

= Every process has its own data it handles exclusively; other
processes may request to execute operations on this data on their
behalf — this ensures freedom from data races

» Requests are on non-separate (local) data, and
asynchronous on separate (remote) data

M

Data object

separate
request
(asyynchronous)

Data region of Data region of
process q process r

7

Data region of
current process p

Processors and regions

= Terminology: a process handling seqguential execution on the
objects it owns is called a processor

= All calls targeting a given object will be executed by a single
processor, its handler

» This partitions the set of objects into regions

= (Objects located on different regions from the point of view of
the current processor are called separate

* The object locality is captured by the type system

-- object Llocated on:
= x: T -- the current processor
" X: separate T -- a potentially different processor

Object and processor creation

= (Creation of separate objects
= Create a new processor
» Place the object on the new processor

= Example

X: separate X
y: Y

create x -- create new processor and place x on it
create y -- place y on the current processor

Concurrent execution

» Fundamental semantic rule: a call x.r (a) is
= synchronous for non-separate x
= potentially asynchronous for separate x

= \Why only potentially asynchronous?
= Dynamic target type not separate

= A separate declaration does not specify the processor: only states that the
object might be handled by a different processor

= E.g., in some execution, the value of x.y might be a reference to an object in
the current region (including Current)

= Resynchronization (wait-by-necessity) — discussed later
» [ock passing — discussed later

10

Trusting what you read (“reasonability”)

= Potential interference of other threads makes it difficult to
interpret concurrent programs

Assume we define b : separate STACK [INTEGER]
and then have this code:

b.push (10)

== instr‘uctior.)s that are = Interfering instructions
-- not affecting the buffer from other threads

X := b.top

-- X =7

» SCOOQOP addresses this problem by defining pieces of code
(the routine bodies) that can be reasoned about sequentially

11

Exclusive access

= Exclusive access guarantee: A routine call guarantees
exclusive access to the handlers of all separate arguments

compute (b: separate STACK [INTEGER])

do -
b.push (10) |
-- 1instructions not affecting the buffer... | Exclusive
X := b.top accesstob
-- x = 10

end -

= Separate argument rule: SCOOP requires the target of a
separate call to be a formal argument of the enclosing routine

= |f the rule is obeyed, we call the target controlled

» (Guarantee + rule ensure sequential reasoning within routine
bodies

12

A downside: Wrappers

* The separate argument rule makes it necessary to wrap also
single calls on separate targets

Instead of b.push (10) you have to define

wrap_push (b: separate STACK [INTEGER]; i: INTEGER)
do
b.push (i)
end

and then call wrap_push (b, 10)

» There are suggestions for alternative syntax which make this
wrapping unnecessary, but they are not implemented yet ®

13

Example: Dining Philosophers (1)

class PHILOSOPHER
feature
make (left, right: separate FORK)
do
left fork := left
right_fork := right
end
eat (left, right: separate FORK) do ... end
-- Exclusive access to both the left and the right forks is
-- secured before eating (multi-reservation of exclusive access)
think do ... end

live
do
from until false loop
think
eat (left_fork, right fork)
end
end

feature {NONE}
left fork: separate FORK
right fork: separate FORK
end

14

Example: Dining Philosophers (2)

class DINING_PHILOSOPHERS
feature
make
local
left fork: separate FORK
right fork: separate FORK
philosopher: separate PHILOSOPHER
do
-- create n philosophers and Launch them

create philosopher.make (left_fork, right_fork)
launch_philosopher (philosopher)

end

feature {NONE}
launch_philosopher (a_philosopher: separate PHILOSOPHER)
do
a_philosopher.live
end
end

15

Resynchronization: Wait-by-necessity

» Resynchronization after a separate call uses the wait-by-
necessity mechanism

= The client will wait for the result of a query

x.f

x.g (a)
y.f

value := x.some_query -- Wait until all calls on x have
-- finished and the value is returned

= Synchrony vs. asynchrony revisited:

for a separate target x
= x.command (...) is potentially asynchronous
» v := X.query (...) isalways synchronous

16

Lock passing

= Motivation

= A processor p requests that a processor g executes a feature, but g
needs access to objects to which p has currently exclusive access

= This leads to a deadlock

f (x: separate X; y: separate Y)
do
Xx.g (y) -- x waits for y to become available,
-- to which Current has exclusive access
end

* To avoid this situation, lock passing is used

= |f the client has exclusive access to arguments of a separate call,
the client transfers the exclusive access to the supplier until the call
returns

= The client has to wait until it regains exclusive access

17

Condition synchronization

= How to express condition synchronization?
» Use contracts: preconditions become wait conditions
= Elegant: conditions are explicit (as boolean expressions)

put (b: separate BOUNDED BUFFER [INTEGER]; i: INTEGER)
-- Store 1 1into buffer b.
require
not b.is full |-- wait condition
do
b.append (i)
end

= Semantics: A call with separate arguments and wait condition
waits until

= all corresponding objects are available and
» the wait condition is fulfilled

18

Example: Producer-Consumer

class PRODUCER
feature
put (b: separate BOUNDED BUFFER [INTEGER]; i: INTEGER)
require
not b.is full
do
b.append (i)
end

end

class CONSUMER

feature
take (b: separate BOUNDED BUFFER [INTEGER]): INTEGER

require
not b.is_empty
do
:= b.remove
end

end

19

Wait conditions vs. correctness conditions

= The following example mixes a wait condition and a
correctness condition

put (b: separate BOUNDED BUFFER [INTEGER]; i: INTEGER)
-- Store 1 into buffer b.

require

not b.is full -- wait condition

i>0 -- correctness condition
do

b.append (i)
end

= Two different semantics

= Separate: wait condition (wait until fulfilled)
= Non-separate: correctness condition (fail if not fulfilled)

20

Type System

Type system: Intuition

» The semantics of a call changes depending on whether a call
IS executed on a separate or non-separate target

" non-separate: synchronous

» geparate: potentially asynchronous

* The type system ensures that the semantics is preserved
Assume we have

nonsep: T

sep: separate T

then

sep := nonsep -- @ allowed: calls on sep will be always
-- synchronous, but separate guarantees
-- only potentially asynchronous

nonsep := sep -- X not allowed: calls on nonsep will be

-- potentially asynchronous, but non-separate
-- 18 supposed to guarantee synchronous

22

Type system: Subtyping rules

» Programming languages with subtyping
= Subtyping relation D & C, meaning that D is a subtype of C
= D <€ C expresses that an entity of type D can be safely used in a
context where C is expected
= Separate types are pairs (x, C)
= Separateness o € { , separate}
= Regular type C

= (Given the subtyping relation of Eiffel, we can derive the
subtyping relation for separate types

1. Forall C, D, «: D St C = (&, D) E5c00p (&, C)
2. Forall C, a: (, C) Sscoop (separate, C)

23

Example: Subtyping

-- B 1inherits from A

a:. separate A

b: B

C: separate B

f (x: separate A; y: B) do ... end

~ f (a, b) 4
= f(a,) X
= f (b, b) 4

= a

SX00

a
= b :=
C

24

Example: Passing a string

-- Client -- Supplier
s: STRING class B
feature
f (b: separate B) g (sl: separate STRING)
do do
b.g (s) create s.make from separate (sl)
end end
s: STRING
end

* |nthis example, a string needs to be passed

= Anassignments := slin feature g would not be valid

» Therefore make from_separate is used

» Also, this is another example for lock passing
= The client has exclusive access to s, as it is non-separate

* Inthecallb.g (s), lock passing occurs

25

Type combinators

= Result type Tquery_result ofaquerycall x.f (...)?
Touery resut = (0 ¥ 0, G o) Where a, * oy is defined as:

o
o, f non-separate separate
non-separate non-separate separate
separate separate separate

» Expected actual argument type T, ., iNn xef (a)?

actua

Tactual = (ax * Uformals Cformal) where Oly * Oformal is defined as:
o, Formal non-separate separate
non-separate non-separate separate
separate 1 separate

Not possible: actual argument must be
non-separate from the target, not the client

26

Example: Result type combinator

» |s the following example accepted by the compiler?

-- Client -- Supplier
a: A class T
feature
r (x: separate T) b: A
do end

27

Example: Argument type combinator

» |s the following example accepted by the compiler?

-- Client -- Supplier
b: A class Z
feature
r (x: separate 2) f (a: A)
do do
x.f (b) a.f
end end

end

28

Expanded classes

Eiffel has so-called expanded classes (e.g. INTEGER) where
values are actual values instead of references

Expanded objects can be passed to separate calls even if the
supplier expects a non-separate argument

Example: when replacing reference type A in the previous
example by expanded type INTEGER, the example is valid

-- Client -- Supplier
b: INTEGER class Z
feature
r (x: separate 2) ¥ (a: INTEGER)
do do
x.f (b) a.f
end end

end

29

Dynamic type of a separate object

= We can use Eiffel’'s object tests to determine the dynamic type
of a separate object

= An object test succeeds if the run-time type of its source
conforms in all of
= Detachability (see Eiffel’'s void-safety mechanism)
= |ocality
= (Class type to the type of its target

» We can downcast a separate entity to a non-separate one if
the entity represents a non-separate object at runtime

meet friend (p: separate PERSON)
do
if attached {PERSON} p.friend as ap then
visit (ap)
end
end

30

Genericity

» Entities of generic types may be separate

list: LIST [BOOK]
list: separate LIST [BOOK]

= Actual generic parameters may be separate

list: LIST [separate BOOK]
list: separate LIST [separate BOOK]

= All combinations are meaningful and can be useful

= Separateness is relative to the object of the generic class

e.g. elements of 1ist: separate LIST [BOOK] are non-separate
with respect to 1ist but separate with respect to Current

31

Implementation

32

Reasoning guarantees

= There are two key reasoning guarantees that an
implementation of SCOOP must provide

1. Non-separate calls execute immediately and are synchronous

2. Calls to another handler to which exclusive access is granted will
be executed in the order they are logged, and there will be no
intervening calls logged from other clients

* The second guarantee provides strong control over the order
iIn which messages are processed

In other message-passing models (e.g. the Actor model, see later
lecture) the sending processes typically do not know the order of
processing of their messages

33

How to achieve exclusive access (1)

* To achieve the reasoning guarantees, a simple lock-based
scheme can be used

Client ¢, places calls in a queue for handler h to dequeue and

process; other clients ¢y, ..., ¢ must wait until the current client is
finished
h|g <.
\
3 I ~
C3 Co C ' '
3] le2] e N
\ R
e

= Because of the contention for the handler lock, this solution is
inefficient

34

How to achieve exclusive access (2)

» |nstead of the naive implementation, we can use multiple
queues that can be enqueued into by multiple clients
» Each handler maintains a queue-of-queues (gray boxes)

= Each client has their own private queue (green boxes) it enqueues
into, finishing with an end token

= A handler processes only one private queue at a time and moves on
to the next only when the end token is reached, maintaining the

reasoning guarantees

e fE @

» Handler contention is no longer a performance bottleneck, as
clients can enqueue requests at any time

35

Conclusions

36

Trade-offs

» Advantages
= Safety: no data races
= “Reasonability”: processing order of messages as expected
» |ock management taken care of by the runtime
» Elegant integration of condition synchronization
= Reservation of multiple objects at once

= Disadvantages
= Need to “wrap” feature calls — fixable by syntax, to be released
» Restrictions imposed on the programmer, reduced flexibility
= Very different from models with threads and locks, learning curve

= Performance: current implementation is among the most efficient of
safe concurrent languages, but in general safety is not without cost

= Currently, no multiple readers — fixed by an extension of the model
(passive processors), to be released

37

