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Today’s agenda

|. what’s wrong with locks?
2. lock-free algorithms and data structures

3. transactional memory



What'’s wrong with locks?
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They are difficult to use correctly

forget to take a lock?
take too many locks!?
take the locks in the wrong order?

take the wrong lock?



They are difficult to use correctly

forget to take a lock!? l danger of data race '

take too many locks? l danger of deadlock '
take the locks in the wrong order? l danger of deadlock '

take the wrong lock? | 222




Blocking, faults, and performance...

priority inversion

=> lower-priority thread preempted while holding a lock
that a higher-priority thread needs

convoying

=> multiple threads of the same priority contend
repeatedly for the same lock

fault tolerance

=> what if a faulty process halts whilst holding a lock?

granularity of locking

=> Jock overhead vs. lock contention



Blocking, faults, and performance...

priority inversion

=> lower-priority thread preempted while holding a lock
that a higher-priority thread needs

convoying

=> multiple threads of the same priority contend
repeatedly for the same lock

fault tolerance

=> what if a faulty process halts whilst holding a lock?

granularity of locking decreases with more locks

=> Jock overhead vs. lock contention

/\

‘ increases with more locks ’




Locks are not “composable™ in general

® they don’t support modular programming

=> i.e. building larger programs from smaller blocks

class Account {
int balance;
synchronized void deposit(int amount) {
balance = balance + amount;
}
synchronized void withdraw(int amount) {
balance = balance - amount;

¥

how to implement
a “transfer’” method?



Locks are not “composable™ in general

® although deposit and withdraw are correctly
implemented by themselves, the following is incorrect:

void transfer(Account accl, Account acc2, int amount) {
' accl.withdraw(amount);
® acc2.deposit(amount);




Locks are not “composable” in general

® although deposit and withdraw are correctly
implemented by themselves, the following is incorrect:

void transfer(Account accl, Account acc2, int amount) {
accl.withdraw(amount);
acc2.deposit(amount);

void transfer(Account accl, Account acc2, int amount) {
synchronized (accl) {
synchronized (acc2) {
accl.withdraw(amount);
acc2.deposit(amount);

have to add explicit
locking code




How do we do concurrent programming
without locks!?

® message passing

=> no shared data at all
=> but: overheads of messaging, slower access to data, ...

® |ock-free programming

=> instead of locks, use stronger atomic operations |

® software transactional memory (STM)

=> based on the idea of database transactions




Next on the agenda

|. what’s wrong with locks? J

2. lock-free algorithms and data structures

3. transactional memory



Lock-free programming

write shared-memory concurrent programs without
using locks (but still ensuring thread safety)

idea: use stronger atomic operations (typically provided
by the hardware)

designing general lock-free algorithms is difficult

=> focus instead on developing lock-free data structures
=> stack, list, queue, buffer, ...

=> NB: avoids many of the problems of locks, but not
the problem of compositionality



Classes of lock-free algorithms

® typically distinguish two classes of lock-free algorithms

4 ) 4 )
lock-free wait-free




Classes of lock-free algorithms

® typically distinguish two classes of lock-free algorithms

-

lock-free

=> guaranteed
system-wide progress

=> i.e. infinitely often
some process finishes

J

[

-

wait-free

=> guaranteed
per-thread progress

=> |i.e. all processes
complete in a finite
number of steps

| implies |

free from deadlock

free from deadlock
and starvation



Compare-and-swap (CAS)

compare-and-swap (CAS) combines a load and a store
into a single atomic operation

takes three arguments: a memory address x, an old
value, and a new value

CAS (%, old, new)

atomically reads the contents at x, and, if it contains
old, updates it to new




Compare-and-swap (CAS)

CAS must indicate whether or not it performed the

substitution

=> by returning the value read from memory
=> or by a simple Boolean response

latter variant sometimes
called compare-and-set:

(tAS (x, old, new)
do-atomic
if *x = old then
*X 1= new;

else

end
end

result := true

result := false




Compare-and-swap (CAS)
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Compare-and-swap (CAS)

35

66

38

86

CAS (5,21,0)
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Compare-and-swap (CAS)

3 4 5 6 /

35

86

44 | 66 | 38

CAS (5,21,0)  false
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Using CAS to implement lock-free
algorithms

CAS can be used to implement lock-free concurrent
data structures

=> we will look at a concurrent stack and queue

typically, a thread interacting with a data structure will
loop repeatedly until the CAS operation succeeds

=> not as easy to do correctly as it sounds! :-)
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Treiber stack
(a simple lock-free stack)

CAS facilitates a lock-free stack implementation (due
to Treiber, 1986)

stack of integers represented as a linked list of nodes;
the top of the stack is given by head

class Node {
Node* next;
int 1tem;

¥

Node* head; // top of the stack
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Treiber stack
(a simple lock-free stack)

® to implement push and pop,a common pattern is used:
(1) read a value from the current state
(2) compute an updated value based on the read one

(3) atomically update the state by swapping the new
for old

24



Push

void push (int value) {
Node* oldHead;

Node* newHead := new Node();
newHead.item := value;
do {
oldHead := head;
newHead.next := head;

} while (!CAS(&head, oldHead, newHead));

25



Push

void push (int value) {
Node* oldHead;

Node* newHead := new Node();
newHead.item := value;
do {
oldHead := head;
newHead.next := head;

} while (!CAS(&head, oldHead, newHead));

. _ N
operation fails if another process has changed
the head in the meantime (then loop repeats) '
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head

Push example (two threads)

s/
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head

Push example (two threads)

s/

28

(1) Thread A: start push(3)

(2) Thread B: start push(3)



Push example (two threads)

L4

head

)
\ 5
L.\/
)5/

2/

81/

s/

| | null
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Push example (two threads)

L4

head

L5
\ 5
\ / (3) Thread B: CAS head
LI from LI to L5
> 5 /

s/
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Push example (two threads)

L4 L5
INEE
1 /
head 5 /
./
81/
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L4

Push example (two threads)

head

L5

5

32

(4) Thread A: CAS head
from LI to L4
=> FAILS

(5) Thread A: restart
loop; update pointer



Push example (two threads)

L4 L5
5 5
1 /
head 5 /
./
81/
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Push example (two threads)

L4 L5
5 5
(6) Thread A: CAS head from
L1 L5 to L4
head 5 /
0/
81/
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Push example (two threads)

L4 L5
5 > 5
/ LI /
head/ 5 /
./
81/
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Pop

int pop () {
Node* oldHead;
Node* newHead;
do {
oldHead := head;
if(oldHead = null) return EMPTY;

newHead := oldHead.next;
} while(!CAS(&head, oldHead, newHead));
return oldHead.1item;

36




head

Pop example (two threads)

s/
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head

Pop example (two threads)

(1) Thread A: start pop, read 5 at LI

(2) Thread B: start pop, read 5 at LI

s/
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head

Pop example (two threads)

LI (3) Thread B: CAS head from LI to L2

s/
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Pop example (two threads)

head 5 /

s/
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head

Pop example (two threads)

L3

4]

(4) Thread A: CAS head
from LI to L2
=> FAILS

(5) Thread A: restart
loop, read 8 at L2



head

Pop example (two threads)

L3

42

(6) Thread A: CAS head
from L2 to L3



Pop example (two threads)

LI

head 5 /

43



/!\ CAS can be fooled!

® in the stack example, the following has to be avoided:

T,: starts pop() — reads value of current head as X
T,: executes pop(), removing X from the stack

T,: modifies the stack arbitrarily

T,: executes push(X), putting X back on the stack
T,: finishes pop() — CAS succeeds, since X is on top

44



/!\ The ABA problem (1)

this problematic pattern is called the ABA problem

T: a value is read from state A

T2: the state is changed to state B

Ti: CAS operation cannot distinguish between A
and B, so assumes the state is still A

avoided in our stack since push always creates a new
node, and the old node’s location is not freed

easy to introduce when implementing memory
management yourself
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/!\ The ABA problem (2)

head > § /

s/




/!\ The ABA problem (2)

head

L3

(1) thread A: started pop; about to
CAS head from LI to L2

(2) threads B, C: both do pop



/!\ The ABA problem (2)

LI

head 5 /




/!\ The ABA problem (2)

head

> | |null

suppose we have a memory
management policy that adds
these to “thread-local pools™
according to who did pop

threads then attempt to first
recycle nodes from their local
bools before creating new ones



/!\ The ABA problem (2)

head

L3

null

. LI




/!\ The ABA problem (2)

head

L3

(3) various threads call push and pop...

| | null

LI




/!\ The ABA problem (2)

head

L3




/!\ The ABA problem (2)

head

L3

(4) thread A: wakes up, successfully
calls CAS on head from LI to L2




/!\ The ABA problem (2)

head <




/!\ The ABA problem (2)

head <

how can this be prevented?




Another example: a lock-free queue

CAS can be used similarly to implement a concurrent
FIFO queue, with enqueue and dequeue operations

represented as a linked list of nodes, starting from a
sentinel node; front of the queue at head, back of the
queue at tal

we implement it in Java (garbage collection prevents ABA)



Another example: a lock-free queue

® CAS can be used similarly to implement a concurrent
FIFO queue, with enqueue and dequeue operations

® represented as a linked list of nodes, starting from a
sentinel node; front of the queue at head, back of the
queue at tal

® we implement it in Java (garbage collection prevents ABA)

public class Node {
public int item;
public AtomicReference<Node> next;
public Node(int item) {
this.item = item;
this.next = new AtomicReference<Node>(null);




Another example: a lock-free queue

® example queue:

head tail
Y Y
sentinel > § > 8 | null

® the sentinel (or “dummy node”) prevents head and tail
from pointing to null; for example, this is the empty queue:

head tail

|~

sentinel | null




Enqueue

the enqueue operation should add a Node to the back of
the queue, updating both next for that node as well as tail

requires two CAS operations

=> must be prepared to encounter a “half-finished” enqueue
operation and finish the job

=> “helping technique”

strategy: loop until you succeed... but if you don’t, at least
you can help fix pointers!



Enqueue example (one thread)

head tail
Y Y
sentinel > § > 8 | null

(1) Thread A: CAS next



head

A 4

Enqueue example (one thread)

tail

sentinel

null




head

A 4

Enqueue example (one thread)

tail

Y

sentinel

» 5 > 8

> 3

null

(2) Thread A: CAS tail




head

A 4

Enqueue example (one thread)

sentinel

tail

<€

null




Enqueue method

public void eng(int item) {
Node node = new Node(item);
while (true) {
Node last = tail.get();
Node next = last.next.get();
if (last == tail.get()) {
if (next == null) {
if (last.next.compareAndSet(next, node)) {
tail.compareAndSet(last, node);
return;
} else {
tail.compareAndSet(last, next);

Y rrod




Enqueue method

public void eng(int item) {
Node node = new Node(item);
while (true) {
Node last = tail.get();
Node next = last.next.get();
if (last == tail.get()) {
if (next == null) {
if (last.next.compareAndSet(next, node)) {
tail.compareAndSet(last, node);
return; \does it matter if this fails?
} else {
tail.compareAndSet(last, next);

Y rrod




Enqueue example (two threads)

head tail
Y Y
sentinel > § > 8 | null

(1) Thread A: starts enq(3), reads tail/next

(2) Thread B: starts enq(3), reads tail/next



Enqueue example (two threads)

head tail
Y Y
sentinel > § > 8 | null

(3) Thread A: calls CAS on next



Enqueue example (two threads)

head tail

A 4 \ 4

sentinel > § > 8 > 3 |null




Enqueue example (two threads)

head tail
Y Y
sentinel > § > 8 > 3 |null

(4) Thread B: calls CAS
=> FAILS

(5) Thread B: calls CAS
to “repair’’ talil



head

A 4

Enqueue example (two threads)

sentinel

tail

W) [«

null




head

A 4

Enqueue example (two threads)

tail

sentinel

= » 8 >

W) [«

null

(6) Thread A: CAS to

update tail

=> FAILS, exits loop

(7) Thread B: restarts

loop, CAS on next




head

A 4

Enqueue example (two threads)

sentinel

tail

>|

7

3

null




head

A 4

Enqueue example (two threads)

sentinel

tail

(8) Thread B: CAS
to update tail

>|

7

3

null




Enqueue example (two threads)

head

A 4

sentinel > § > 8 > 3

tail > 3 | null




Dequeue

the dequeue operation should return the integer stored in
the Node at the front of the queue (or throw an

exception if it is empty) and make the next Node the head

must ensure that head does not “advance” past tail



Dequeue example (one thread)

head tail
Y Y
sentinel > § > 8 | null

(1) Thread A: read value 5



Dequeue example (one thread)

head tail
Y Y
sentinel > § > 8 | null

(2) Thread A: CAS head



Dequeue example (one thread)

head tail

U e
\ 4
00

sentinel > null




Dequeue example (one thread)

head tail
 / \
sentinet > § > 8 |null

released new sentinel



public int deqgq() throws EmptyException {
while (true) {

Node first = head.get();
Node last = tail.get();
Node next = first.next.get();
if (first == head.get()) {
if (first == last) {
if (next == null) {
throw new EmptyException();

}
tail.compareAndSet(last, next);

} else {
int item = next.item;
if (head.compareAndSet(first, next))
return item;

1339




public int deqgq() throws EmptyException {
while (true) {
Node first = head.get();
Node last = tail.get();
Node next = first.next.get();
if (first == head.get()) {
if (first == last) {

o ° ?
if (next == null) { what is this for:
throw new EmptyException();
}

tail.compareAndSet(last, next);
} else {
int item = next.item;
if (head.compareAndSet(first, next))
return item;

1339




Dequeue example (two threads)

head

|~

tail

sentinel

null

(1) Thread A: starts enqueueing LI



Dequeue example (two threads)

head tail

L~

sentinel > 5 | null




Dequeue example (two threads)

head tail

|~

LI

sentinel

null

(2) Thread B: dequeue!



Dequeue example (two threads)

head

tail

sentinel

nO!

» 5

null

(2) Thread B: dequeue!

thread B must first redirect tail



Dequeue example (two threads)

head tail

L

sentinel > 5 | null

(3) Thread A: reawakens, and exits loop
since tail was already redirected



Lock-free programming: discussion

good performance in some situations, avoiding many of
the problems of locks

=> deadlock, priority inversion, ...

but difficult to correctly implement lock-free algorithms

=> e.g. the ABA problem
=> can lead to unnatural structuring of algorithms
=> not composable

focus on lock-free data structures (well-established
algorithms and implementations available)
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Next on the agenda

|. what’s wrong with locks? /
2. lock-free algorithms and data structures /

3. transactional memory
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What's wrong with CAS!?

the conventional atomic primitives of lock-free
approaches operate on one memory location at a time

=> algorithms can have an unnatural structure
=> e.g. concurrent FIFO queues: “half-finished” enq!

still a lack of compositionality

very difficult to use in practice (and even harder to use
correctly!)

89



Transactional memory: the future?

transactional memory (TM) aims at simplifying atomic
updates of multiple independent memory locations

=> allows a group of instructions to execute in an atomic way
=> if properly implemented, does not deadlock or livelock

software (STM) and hardware (HTM) solutions

inspiration: transactions in database management
systems

90



The inspiration: database transactions

® 3 database transaction is a sequence of operations performed
within a DBMS enjoying these properties:

=> Atomicity: transactions appear to execute completely or not at all

=> Consistency: transactions preserve consistency of the DB

=> [solation: other operations cannot access data modified by an
incomplete transaction

=> Durability: all committed transactions guaranteed to persist

® for TM, atomicity and isolation are most interesting

91



Software transactional memory (STM)

® research first focused on software implementations

=> starting with the work of
Shavit & Touitou, 1995

=> based on earlier ideas of a
multiprocessor hardware
architecture to support
lock-free programming

(Herlihy & Moss, 1993)

® idea:allow code to be enclosed by an atomic-block

=> guarantee: executes atomically with respect to
other atomic-blocks

92 (photo by Jukka Suomela)



|dea of Transactional Memory

public class TransactionalQueue<T> {
private Node head;
private Node tail;
public TransactionalQueue() {
Node sentinel = new Node(null);
head = sentinel;
tall = sentinel;

}
public void enqg(T item) {

atomic {
Node node = new Node(item);
tail.next = node;
tall = node;

)




|dea of Transactional Memory

public void eng(T x) {

)

atomic {
if (count == items.length)
retry;
items[taill] = x;
if (++tail == items.length)
talil = 0;

++count; r — —
conditional synchronisation

via rollback
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|dea of Transactional Memory

atomic {
X = go.deq();
gl.enq(Xx);

J (I composing atomic calls '
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Implementing STM

® 3 possible “optimistic” implementation scheme:

=> atomic-blocks run without locking; write to transaction log
=> onus placed on readers to check consistency
=> transaction can be committed, aborted, and/or re-executed

® numerous implementations of STM (mostly research
prototypes; quality varies!)

=> http://en.wikipedia.org/wiki/Software transactional memory#Implementation issues

® nice support in concurrent Haskell

=> http://research.microsoft.com/pubs/674 18/2005-ppopp-composable.pdf
=> https://www.fpcomplete.com/school/advanced-haskell/beautiful-concurrency/3-
software-transactional-memory

96


http://en.wikipedia.org/wiki/Software_transactional_memory#Implementation_issues
http://en.wikipedia.org/wiki/Software_transactional_memory#Implementation_issues
http://research.microsoft.com/pubs/67418/2005-ppopp-composable.pdf
http://research.microsoft.com/pubs/67418/2005-ppopp-composable.pdf
https://www.fpcomplete.com/school/advanced-haskell/beautiful-concurrency/3-software-transactional-memory
https://www.fpcomplete.com/school/advanced-haskell/beautiful-concurrency/3-software-transactional-memory
https://www.fpcomplete.com/school/advanced-haskell/beautiful-concurrency/3-software-transactional-memory
https://www.fpcomplete.com/school/advanced-haskell/beautiful-concurrency/3-software-transactional-memory

Concurrent Haskell

b 3

starting point:“a purely declarative language is perfect for ST

°
=> type system explicitly separates computations with side-effects
=> refine so that transactions perform memory effects but not

irrevocable input/output effects
=> most computation takes place in the pure functional world: never
needs to be rolled back
® example: resource manager; put r n should return n units of
resource to r

type Resource = TVar Int

putR :: Resource -> Int -> STM ()

putR r i = do { v <- readTVar r

; writeTVar r (v+1) }




Concurrent Haskell

® starting point:‘“a purely declarative language is perfect for STM”

=> type system explicitly separates computations with side-effects

=> refine so that transactions perform memory effects but not
irrevocable input/output effects

=> most computation takes place in the pure functional world: never
needs to be rolled back

® example: resource manager; put r n should return n units of

resource to r

returns STM actions

type

putR ::

putR

Resource = TVar Int
Resource -> Int -> ST
ri=do { v <- readT\Va r

; writeTVar r (v+1) }




Concurrent Haskell

® starting point:‘“a purely declarative language is perfect for STM”

=> type system explicitly separates computations with side-effects
=> refine so that transactions perform memory effects but not
irrevocable input/output effects

=> most computation takes place in the pure functional world: never
needs to be rolled back

® example: resource manager; put r n should return n units of
resource to r

type Resource = TVar Int
putR :: Resource -> Int -> STM ()
putR r 1 = do { v <- readTVar r

; writeTVar r (v+1) }

main = do { ...; atomic (putR r 3); ...}




Concurrent Haskell

® starting point:“a purely declarative language is perfect for ST.

b 3

=> type system explicitly separates computations with side-effects

=> refine so that transactions perform memory effects but not
irrevocable input/output effects

=> most computation takes place in the pure functional world: never
needs to be rolled back

® example: resource manager; put r n should return n units of

resource to r : ,
compose actions!

type Resource = TVar Int
putR :: Resource -> Int -> STM
putR r 1 = do { v <- readTVa

; writeTVar

returns an /O action
that runs the transaction
atomically wrt to all
(v+i) } other memory

transactions

main = do { ...; atomic (putR r 3); ...}




Hardware Transactional Memory (HTM)

extensions to the processor’s instruction set
embed transactional memory into existing cache design

going mainstream: Intel Haswell (2013) architecture includes
support
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Next on the agenda

|. what’s wrong with locks? J
2. lock-free algorithms and data structures /

3. transactional memory J
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Conclusion

® |ock-free programming can lead to good performance

e difficult to get right

=> CAS can modify only one memory location at a time
=> ABA problem

® well established lock-free concurrent data structures are
available

® STM/HTM may yet provide a simpler model for concurrent
programming

® next lecture: correctness conditions (linearizability)
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