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Today’s agenda
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1. concurrent objects and correctness

2. quiescent and sequential consistency

3. linearizability



Terminology: concurrent objects

• a concurrent object is a data object shared by concurrent 
processes

  => has a type defining possible values, and primitive methods that
         provide the only means of creation/manipulation
  => e.g. a shared data structure, a shared message queue, ...

• a concurrent system is a collection of sequential processes 
that communicate through concurrent objects
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Specifying correctness of operations

• in a sequential system, it is easy to specify the behaviour of 
methods

   => pre- and postconditions

   => methods cannot be called on objects that are in
         an “intermediate state”

• in a concurrent system, need to accommodate interleavings 
of method invocations

{pre} q.op {post}
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What does it mean for concurrent 
objects to be correct?

• typically boils down to some notion of equivalence with 
sequential behaviour

• consider a simple, lock-based concurrent FIFO queue
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public	
  void	
  enq(int	
  x)	
  throws	
  
FullException	
  {
	
  	
  lock.lock();
	
  	
  try	
  {
	
  	
  	
  	
  if	
  <<queue	
  full>>
	
  	
  	
  	
  	
  	
  {	
  throw	
  new	
  FullException();	
  }
	
  	
  	
  	
  <<enqueue	
  x>>
	
  	
  	
  	
  }	
  finally	
  {
	
  	
  	
  	
  	
  	
  lock.unlock();
}}

public	
  int	
  deq()	
  throws	
  
EmptyException	
  {
	
  	
  lock.lock();
	
  	
  try	
  {
	
  	
  	
  	
  if	
  <<queue	
  empty>>
	
  	
  	
  	
  	
  	
  {	
  throw	
  new	
  EmptyException();	
  }
	
  	
  	
  	
  <<dequeue	
  x>>
	
  	
  	
  	
  }	
  finally	
  {
	
  	
  	
  	
  	
  	
  lock.unlock();
}}
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A lock-based concurrent FIFO queue
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What happens if we drop the locks?

public	
  void	
  enq(int	
  x)	
  throws	
  
FullException	
  {
	
  	
  lock.lock();
	
  	
  try	
  {
	
  	
  	
  	
  if	
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  <<enqueue	
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  }	
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}}
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  int	
  deq()	
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  {
	
  	
  lock.lock();
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  {
	
  	
  	
  	
  if	
  <<queue	
  empty>>
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  {
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What happens if we drop the locks?

public	
  void	
  enq(int	
  x)	
  throws	
  
FullException	
  {
	
  	
  lock.lock();
	
  	
  try	
  {
	
  	
  	
  	
  if	
  <<queue	
  full>>
	
  	
  	
  	
  	
  	
  {	
  throw	
  new	
  FullException();	
  }
	
  	
  	
  	
  <<enqueue	
  x>>
	
  	
  	
  	
  }	
  finally	
  {
	
  	
  	
  	
  	
  	
  lock.unlock();
}}

public	
  int	
  deq()	
  throws	
  
EmptyException	
  {
	
  	
  lock.lock();
	
  	
  try	
  {
	
  	
  	
  	
  if	
  <<queue	
  empty>>
	
  	
  	
  	
  	
  	
  {	
  throw	
  new	
  EmptyException();	
  }
	
  	
  	
  	
  <<dequeue	
  x>>
	
  	
  	
  	
  }	
  finally	
  {
	
  	
  	
  	
  	
  	
  lock.unlock();
}}

are there circumstances in which this queue can be correct?

what does “correct” mean?



Reasoning about concurrent objects:
a principle

• concurrent objects may have methods with finer-grained 
locking or no locking at all

• need to be able to specify and reason about 
implementations without relying on method-level locking

• but the example illustrates an important principle:
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it’s easier to reason about concurrent objects if we can 
map their concurrent executions to sequential ones



Which “equivalences” with sequential 
behaviour do we care about?

• do we care about program order, fairness, ...?

• in practice, different applications require different 
“strengths” of correctness conditions

  => print job queue for a lightly loaded printer
  => banking server (e.g. transfer money from savings; withdraw £50)
  => stock-trading server
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We will consider three correctness 
conditions

quiescent consistency

  => whenever an object becomes quiescent, then the execution so far
         is equivalent to some sequential execution of the completed calls

sequential consistency

  => method calls should appear to take effect in a sequential order
         consistent with the program order

linearizability

  => each method call should appear to take effect instantaneously at
         some moment between its invocation and response
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Next on the agenda
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1. concurrent objects and correctness

2. quiescent and sequential consistency

3. linearizability



Terminology: method calls

• individual threads sequentially execute method calls that 
have invocation and response events

• a method is pending if its call has occurred, but not its 
response
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method(x)

invocation response



What conditions / restrictions do we 
need?

• let’s derive some principles from examples of unacceptable 
behaviours
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A

B

r.write(7)

r.write(-3) r.read(-7)

!
one might expect to 
read 7 or -3, not a 
mixture of both



A principle
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A principle
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method calls should appear to happen in 
a one-at-a-time, sequential order

! too weak alone!

permits, e.g. readers to always 
return the object’s initial state



A principle
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A principle

method calls should appear to happen in 
a one-at-a-time, sequential order

A

B

r.write(7)

r.write(-3)

r.read(???)

it would be unacceptable to read 7 here



Quiescent consistency

method calls should appear to happen in 
a one-at-a-time, sequential order

method calls separated by a period of 
quiescence should appear to take effect 

in their real-time order

+

NB: an object is quiescent if it has no pending method calls



Quiescent consistency
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Quiescent consistency
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What if program order matters?

• should this behaviour be allowed?    (example by Huisman)
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What if program order matters?

• should this behaviour be allowed?    (example by Huisman)
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A

B
r.write(7) r.write(-3) r.read(7)

r.read(?) r.read(?)

!
not acceptable: the 
value read is not the 
last it wrote



Sequential consistency

method calls should appear to happen in 
a one-at-a-time, sequential order

method calls should appear to take 
effect in program order

+



Sequential consistency

method calls should appear to happen in 
a one-at-a-time, sequential order

method calls should appear to take 
effect in program order

+

i.e. in any concurrent execution, there is a way to order the 
method calls sequentially so that they are (1) consistent with 

program order; and (2) meet the object’s sequential specification



Sequential consistency
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Is this execution sequentially consistent?
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Is this execution sequentially consistent?

A

B
q.enq(y)

q.enq(x) q.deq(y)

q.deq(x)

yes! two possible 
consistent orderings

A: enqueues x
B: enqueues y
B: dequeues x
A: dequeues y

B: enqueues y
A: enqueues x
A: dequeues y
B: dequeues x

sequential program order preserved!



Is this execution sequentially consistent?
(from Huisman)
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Is this execution sequentially consistent?
(from Huisman)

A

B
q.deq(y)

q.enq(x) q.enq(y)

q.deq(x)

X proof?



Quiescent vs. sequential consistency

• quiescent and sequential consistency are incomparable

  => quiescent consistency does not necessarily preserve program order
  => sequential consistency is unaffected by quiescent periods

• a correctness condition C is compositional if whenever 
every object satisfies C, the system as a whole satisfies C

  => quiescent consistency is compositional
  => sequential consistency, unfortunately, is not compositional
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Next on the agenda
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1. concurrent objects and correctness

2. quiescent and sequential consistency

3. linearizability



Strengthening sequential consistency to 
gain compositionality

• should this (sequentially consistent) behaviour be allowed?
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A

B
q.enq(5)

q.enq(2) q.deq(5)



Linearizability

each method call should appear to take 
effect instantaneously at some moment 

between its invocation and response

an object is linearizable if all of its 
possible executions are linearizable
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Linearizability

each method call should appear to take 
effect instantaneously at some moment 

between its invocation and response

A

B
q.enq(5)

q.enq(2) q.deq(5)

X sequentially consistent, but not linearizable
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Linearizability

each method call should appear to take 
effect instantaneously at some moment 

between its invocation and response

A

B
q.enq(5)

q.enq(2) q.deq(2)

q
q.enq(2) q.enq(5) q.deq(2)

linearizable



Linearizability: examples

A

B
q.enq(5)

q.enq(2) q.deq(5)

q.deq(2)



Linearizability: examples

A

B
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q.enq(2) q.deq(5)

q q.enq(2)
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linearizable
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Linearizability: examples
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Linearizability: examples
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Linearizability: examples
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Linearizability: examples

A

B
r.write(1)

r.write(0) r.write(2)

r
r.write(0) r.write(1) r.write(2)r.read(1)

linearizable

r.read(1)



Linearization points

• to show that a concurrent object is linearizable, one must 
identify for each method a linearization point where the 
method takes effect

• for lock-based objects, these are the critical sections

• for lock-free approaches, the linearization point is a single 
step where they effects of the method call become visible 
to other method calls
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Sequential consistency vs. linearizability

• linearizable executions are also sequentially consistent

• sequential consistency is less restrictive: allows method calls 
to take effect after their response

• linearizability is compositional: the result of composing 
linearizable objects is linearizable
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Formal definitions

• a call of an operation is split into two events:

   invocation   [A q.op(a1, ..., an) ]
   response   [A q:Ok(r) ]

• where A is a thread ID, q an object, op(a1, ..., an) an 
invocation of call with arguments, and Ok(r) a successful 
response of call with result r

• a history is a sequence of invocation / response events



Formal definitions

• a call of an operation is split into two events:

   invocation   [A q.op(a1, ..., an) ]
   response   [A q:Ok(r) ]

• where A is a thread ID, q an object, op(a1, ..., an) an 
invocation of call with arguments, and Ok(r) a successful 
response of call with result r

• a history is a sequence of invocation / response events

[A q.enq(2) ], [B q.enq(5) ], [B q.Ok ], [A q.Ok ],
[B q.deq() ], [B q.Ok(2) ], [A q.deq() ], [A q.Ok(5) ]

A

B
q.enq(5)

q.enq(2) q.deq(5)

q.deq(2)

H =



• we can define projections on objects and on threads

• assume we have a history:

• object projection:

• thread projection:
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Formal definitions

[A q1.enq(2) ], [B q2.enq(5) ], [B q2.Ok ], [A q1.Ok ],
[B q1.deq() ], [B q1.Ok(2) ], [A q2.deq() ], [A q2.Ok(5) ]H =

[A q1.enq(2) ], [A q1.Ok ], [B q1.deq() ], [B q1.Ok(2) ]H|q1 =

[A q1.enq(2) ], [A q1.Ok ], [A q2.deq() ], [A q2.Ok(5) ]H|A =



• a response matches an invocation if their object and thread 
names agree

• a history is sequential if it starts with an invocation, and 
each invocation (except possibly the last) is immediately 
followed by a matching response

• a sequential history is legal if it agrees with the sequential 
specification of each object
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Formal definitions

[A q.enq(2) ], [A q.Ok ], [B q.enq(5) ], [B q.Ok ]H =



• a call op1 precedes another call op2 (op1 -> op2) if op1’s 
response event occurs before op2’s invocation event

• we write ->H for the precedence relation induced by H

  => e.g.  q.enq(2) ->H q.enq(5)

• an invocation is pending if it has no matching response

• a history is complete if it does not have pending responses

• complete(H) is the subhistory of H with all pending 
invocations removed
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Formal definitions



Linearizability: the definition

• two histories H and G are equivalent if H|A = G|A for all 
threads A

• a history H is linearizable if it can be extended to a history 
G by adding zero or more response events, such that:

  => complete(G) is equivalent to some legal sequential history S
  => ->H ⊆ ->S  (i.e. the precedences of H are maintained)



Linearizability: the definition

• two histories H and G are equivalent if H|A = G|A for all 
threads A

• a history H is linearizable if it can be extended to a history 
G by adding zero or more response events, such that:

  => complete(G) is equivalent to some legal sequential history S
  => ->H ⊆ ->S  (i.e. the precedences of H are maintained)

H b

a

c

S

->H = {a -> c, b -> c} ->S = {a -> b, a -> c, b -> c}

A

B
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Final remarks

• correctness notions for concurrent objects boil down to 
“equivalences” with sequential computations

  => quiescent consistency, sequential consistency, linearizability
  => objects we built in previous weeks were linearizable

• correctness conditions depend on the application’s needs

• in most modern multiprocessor architectures, memory 
reads/writes are not sequentially consistent

  => too expensive!
  => must “ask” for it explicitly when needed
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Lecture based on Chapter 3 of:

recommended reading!


