
Concepts of Concurrent Computation
Spring 2015

Lecture 8: Correctness Conditions

Sebastian Nanz
Chris Poskitt

Chair of
Software Engineering

1

Today’s agenda

2

1. concurrent objects and correctness

2. quiescent and sequential consistency

3. linearizability

Terminology: concurrent objects

• a concurrent object is a data object shared by concurrent
processes

 => has a type defining possible values, and primitive methods that
 provide the only means of creation/manipulation
 => e.g. a shared data structure, a shared message queue, ...

• a concurrent system is a collection of sequential processes
that communicate through concurrent objects

3

Specifying correctness of operations

• in a sequential system, it is easy to specify the behaviour of
methods

 => pre- and postconditions

 => methods cannot be called on objects that are in
 an “intermediate state”

• in a concurrent system, need to accommodate interleavings
of method invocations

{pre} q.op {post}

4

What does it mean for concurrent
objects to be correct?

• typically boils down to some notion of equivalence with
sequential behaviour

• consider a simple, lock-based concurrent FIFO queue

5

What does it mean for concurrent
objects to be correct?

• typically boils down to some notion of equivalence with
sequential behaviour

• consider a simple, lock-based concurrent FIFO queue

6

public	
 void	
 enq(int	
 x)	
 throws	

FullException	
 {
	
 	
 lock.lock();
	
 	
 try	
 {
	
 	
 	
 	
 if	
 <<queue	
 full>>
	
 	
 	
 	
 	
 	
 {	
 throw	
 new	
 FullException();	
 }
	
 	
 	
 	
 <<enqueue	
 x>>
	
 	
 	
 	
 }	
 finally	
 {
	
 	
 	
 	
 	
 	
 lock.unlock();
}}

public	
 int	
 deq()	
 throws	

EmptyException	
 {
	
 	
 lock.lock();
	
 	
 try	
 {
	
 	
 	
 	
 if	
 <<queue	
 empty>>
	
 	
 	
 	
 	
 	
 {	
 throw	
 new	
 EmptyException();	
 }
	
 	
 	
 	
 <<dequeue	
 x>>
	
 	
 	
 	
 }	
 finally	
 {
	
 	
 	
 	
 	
 	
 lock.unlock();
}}

A lock-based concurrent FIFO queue

A

B

C

q.enq(a)

q.enq(b)

q.deq(b)

A lock-based concurrent FIFO queue

A

B

C

lock() <<enq a>>

unlock()

lock()

lock() lock()

unlock()

unlock()

unlock()

<<enq b>>

<<deq b>>!

A lock-based concurrent FIFO queue

A

B

C

lock() <<enq a>>

unlock()

lock()

lock() lock()

unlock()

unlock()

unlock()

<<enq b>>

<<deq b>>!

FIFO
Queue

Timeline

A lock-based concurrent FIFO queue

A

B

C

lock() <<enq a>>

unlock()

lock()

lock() lock()

unlock()

unlock()

unlock()

<<enq b>>

<<deq b>>!

!FIFO
Queue

Timeline

A lock-based concurrent FIFO queue

A

B

C

lock() <<enq a>>

unlock()

lock()

lock() lock()

unlock()

unlock()

unlock()

<<enq b>>

<<deq b>>!

! <<enq b>>FIFO
Queue

Timeline

A lock-based concurrent FIFO queue

A

B

C

lock() <<enq a>>

unlock()

lock()

lock() lock()

unlock()

unlock()

unlock()

<<enq b>>

<<deq b>>!

! <<enq b>> <<enq a>>FIFO
Queue

Timeline

A lock-based concurrent FIFO queue

A

B

C

lock() <<enq a>>

unlock()

lock()

lock() lock()

unlock()

unlock()

unlock()

<<enq b>>

<<deq b>>!

FIFO
Queue

Timeline

! <<enq b>> <<enq a>> <<deq b>>

What happens if we drop the locks?

public	
 void	
 enq(int	
 x)	
 throws	

FullException	
 {
	
 	
 lock.lock();
	
 	
 try	
 {
	
 	
 	
 	
 if	
 <<queue	
 full>>
	
 	
 	
 	
 	
 	
 {	
 throw	
 new	
 FullException();	
 }
	
 	
 	
 	
 <<enqueue	
 x>>
	
 	
 	
 	
 }	
 finally	
 {
	
 	
 	
 	
 	
 	
 lock.unlock();
}}

public	
 int	
 deq()	
 throws	

EmptyException	
 {
	
 	
 lock.lock();
	
 	
 try	
 {
	
 	
 	
 	
 if	
 <<queue	
 empty>>
	
 	
 	
 	
 	
 	
 {	
 throw	
 new	
 EmptyException();	
 }
	
 	
 	
 	
 <<dequeue	
 x>>
	
 	
 	
 	
 }	
 finally	
 {
	
 	
 	
 	
 	
 	
 lock.unlock();
}}

What happens if we drop the locks?

public	
 void	
 enq(int	
 x)	
 throws	

FullException	
 {
	
 	
 lock.lock();
	
 	
 try	
 {
	
 	
 	
 	
 if	
 <<queue	
 full>>
	
 	
 	
 	
 	
 	
 {	
 throw	
 new	
 FullException();	
 }
	
 	
 	
 	
 <<enqueue	
 x>>
	
 	
 	
 	
 }	
 finally	
 {
	
 	
 	
 	
 	
 	
 lock.unlock();
}}

public	
 int	
 deq()	
 throws	

EmptyException	
 {
	
 	
 lock.lock();
	
 	
 try	
 {
	
 	
 	
 	
 if	
 <<queue	
 empty>>
	
 	
 	
 	
 	
 	
 {	
 throw	
 new	
 EmptyException();	
 }
	
 	
 	
 	
 <<dequeue	
 x>>
	
 	
 	
 	
 }	
 finally	
 {
	
 	
 	
 	
 	
 	
 lock.unlock();
}}

are there circumstances in which this queue can be correct?

what does “correct” mean?

Reasoning about concurrent objects:
a principle

• concurrent objects may have methods with finer-grained
locking or no locking at all

• need to be able to specify and reason about
implementations without relying on method-level locking

• but the example illustrates an important principle:

16

it’s easier to reason about concurrent objects if we can
map their concurrent executions to sequential ones

Which “equivalences” with sequential
behaviour do we care about?

• do we care about program order, fairness, ...?

• in practice, different applications require different
“strengths” of correctness conditions

 => print job queue for a lightly loaded printer
 => banking server (e.g. transfer money from savings; withdraw £50)
 => stock-trading server

17

We will consider three correctness
conditions

quiescent consistency

 => whenever an object becomes quiescent, then the execution so far
 is equivalent to some sequential execution of the completed calls

sequential consistency

 => method calls should appear to take effect in a sequential order
 consistent with the program order

linearizability

 => each method call should appear to take effect instantaneously at
 some moment between its invocation and response

18

st
re

ng
th

 o
f c

on
di

tio
n

Next on the agenda

19

1. concurrent objects and correctness

2. quiescent and sequential consistency

3. linearizability

Terminology: method calls

• individual threads sequentially execute method calls that
have invocation and response events

• a method is pending if its call has occurred, but not its
response

20

method(x)

invocation response

What conditions / restrictions do we
need?

• let’s derive some principles from examples of unacceptable
behaviours

21

What conditions / restrictions do we
need?

• let’s derive some principles from examples of unacceptable
behaviours

22

A

B

r.write(7)

r.write(-3) r.read(-7)

What conditions / restrictions do we
need?

• let’s derive some principles from examples of unacceptable
behaviours

23

A

B

r.write(7)

r.write(-3) r.read(-7)

!
one might expect to
read 7 or -3, not a
mixture of both

A principle

24

method calls should appear to happen in
a one-at-a-time, sequential order

A principle

25

method calls should appear to happen in
a one-at-a-time, sequential order

A

B

r.write(7)

r.write(-3) r.read(7)

A principle

26

method calls should appear to happen in
a one-at-a-time, sequential order

A

B

r.write(7)

r.write(-3) r.read(-3)

A principle

27

method calls should appear to happen in
a one-at-a-time, sequential order

! too weak alone!

permits, e.g. readers to always
return the object’s initial state

A principle

28

method calls should appear to happen in
a one-at-a-time, sequential order

A

B

r.write(7)

r.write(-3)

r.read(???)

A principle

method calls should appear to happen in
a one-at-a-time, sequential order

A

B

r.write(7)

r.write(-3)

r.read(???)

it would be unacceptable to read 7 here

Quiescent consistency

method calls should appear to happen in
a one-at-a-time, sequential order

method calls separated by a period of
quiescence should appear to take effect

in their real-time order

+

NB: an object is quiescent if it has no pending method calls

Quiescent consistency

A

B

r.write(7)

r.write(-3)

r.read(-3)

quiescence quiescence

Quiescent consistency

A

B

r.write(7)

r.write(-3)
r.read(-3)

quiescence

Quiescent consistency

A

B

r.write(7)

r.write(-3)
r.read(7)

quiescence

What if program order matters?

• should this behaviour be allowed? (example by Huisman)

34

What if program order matters?

• should this behaviour be allowed? (example by Huisman)

35

A

B
r.write(7) r.write(-3) r.read(7)

r.read(?) r.read(?)

What if program order matters?

• should this behaviour be allowed? (example by Huisman)

36

A

B
r.write(7) r.write(-3) r.read(7)

r.read(?) r.read(?)

!
not acceptable: the
value read is not the
last it wrote

Sequential consistency

method calls should appear to happen in
a one-at-a-time, sequential order

method calls should appear to take
effect in program order

+

Sequential consistency

method calls should appear to happen in
a one-at-a-time, sequential order

method calls should appear to take
effect in program order

+

i.e. in any concurrent execution, there is a way to order the
method calls sequentially so that they are (1) consistent with

program order; and (2) meet the object’s sequential specification

Sequential consistency

A

B
r.write(7) r.write(-3) r.read(-3)

r.read(?) r.read(?)

Is this execution sequentially consistent?

A

B
q.enq(y)

q.enq(x) q.deq(y)

q.deq(x)

Is this execution sequentially consistent?

A

B
q.enq(y)

q.enq(x) q.deq(y)

q.deq(x)

yes! two possible
consistent orderings

Is this execution sequentially consistent?

A

B
q.enq(y)

q.enq(x) q.deq(y)

q.deq(x)

yes! two possible
consistent orderings

A: enqueues x
B: enqueues y
B: dequeues x
A: dequeues y

Is this execution sequentially consistent?

A

B
q.enq(y)

q.enq(x) q.deq(y)

q.deq(x)

yes! two possible
consistent orderings

A: enqueues x
B: enqueues y
B: dequeues x
A: dequeues y

B: enqueues y
A: enqueues x
A: dequeues y
B: dequeues x

Is this execution sequentially consistent?

A

B
q.enq(y)

q.enq(x) q.deq(y)

q.deq(x)

yes! two possible
consistent orderings

A: enqueues x
B: enqueues y
B: dequeues x
A: dequeues y

B: enqueues y
A: enqueues x
A: dequeues y
B: dequeues x

sequential program order preserved!

Is this execution sequentially consistent?
(from Huisman)

A

B
q.deq(y)

q.enq(x) q.enq(y)

q.deq(x)

Is this execution sequentially consistent?
(from Huisman)

A

B
q.deq(y)

q.enq(x) q.enq(y)

q.deq(x)

X proof?

Quiescent vs. sequential consistency

• quiescent and sequential consistency are incomparable

 => quiescent consistency does not necessarily preserve program order
 => sequential consistency is unaffected by quiescent periods

• a correctness condition C is compositional if whenever
every object satisfies C, the system as a whole satisfies C

 => quiescent consistency is compositional
 => sequential consistency, unfortunately, is not compositional

47

Next on the agenda

48

1. concurrent objects and correctness

2. quiescent and sequential consistency

3. linearizability

Strengthening sequential consistency to
gain compositionality

• should this (sequentially consistent) behaviour be allowed?

49

A

B
q.enq(5)

q.enq(2) q.deq(5)

Linearizability

each method call should appear to take
effect instantaneously at some moment

between its invocation and response

an object is linearizable if all of its
possible executions are linearizable

Linearizability

each method call should appear to take
effect instantaneously at some moment

between its invocation and response

A

B
q.enq(5)

q.enq(2) q.deq(5)

Linearizability

each method call should appear to take
effect instantaneously at some moment

between its invocation and response

A

B
q.enq(5)

q.enq(2) q.deq(5)

X sequentially consistent, but not linearizable

Linearizability

each method call should appear to take
effect instantaneously at some moment

between its invocation and response

A

B
q.enq(5)

q.enq(2) q.deq(2)

q

Linearizability

each method call should appear to take
effect instantaneously at some moment

between its invocation and response

A

B
q.enq(5)

q.enq(2) q.deq(2)

q
q.enq(2) q.enq(5) q.deq(2)

linearizable

Linearizability: examples

A

B
q.enq(5)

q.enq(2) q.deq(5)

q.deq(2)

Linearizability: examples

A

B
q.enq(5)

q.enq(2) q.deq(5)

q q.enq(2)

q.deq(2)

q.enq(5) q.deq(2) q.deq(5)

linearizable

57

Linearizability: examples

A

B
r.write(1)

r.write(0) r.read(1) r.write(2)

r.read(0)

58

Linearizability: examples

A

B
r.write(1)

r.write(0) r.read(1) r.write(2)

r.read(0)

X not sequentially consistent, not linearizable

59

Linearizability: examples

A

B
r.write(1)

r.write(0) r.write(2)

r.read(1)

60

Linearizability: examples

A

B
r.write(1)

r.write(0) r.write(2)

r
r.write(0) r.write(1) r.write(2)r.read(1)

linearizable

r.read(1)

Linearization points

• to show that a concurrent object is linearizable, one must
identify for each method a linearization point where the
method takes effect

• for lock-based objects, these are the critical sections

• for lock-free approaches, the linearization point is a single
step where they effects of the method call become visible
to other method calls

61

Sequential consistency vs. linearizability

• linearizable executions are also sequentially consistent

• sequential consistency is less restrictive: allows method calls
to take effect after their response

• linearizability is compositional: the result of composing
linearizable objects is linearizable

62

Formal definitions

• a call of an operation is split into two events:

 invocation [A q.op(a1, ..., an)]
 response [A q:Ok(r)]

• where A is a thread ID, q an object, op(a1, ..., an) an
invocation of call with arguments, and Ok(r) a successful
response of call with result r

• a history is a sequence of invocation / response events

Formal definitions

• a call of an operation is split into two events:

 invocation [A q.op(a1, ..., an)]
 response [A q:Ok(r)]

• where A is a thread ID, q an object, op(a1, ..., an) an
invocation of call with arguments, and Ok(r) a successful
response of call with result r

• a history is a sequence of invocation / response events

[A q.enq(2)], [B q.enq(5)], [B q.Ok], [A q.Ok],
[B q.deq()], [B q.Ok(2)], [A q.deq()], [A q.Ok(5)]

A

B
q.enq(5)

q.enq(2) q.deq(5)

q.deq(2)

H =

• we can define projections on objects and on threads

• assume we have a history:

• object projection:

• thread projection:

65

Formal definitions

[A q1.enq(2)], [B q2.enq(5)], [B q2.Ok], [A q1.Ok],
[B q1.deq()], [B q1.Ok(2)], [A q2.deq()], [A q2.Ok(5)]H =

[A q1.enq(2)], [A q1.Ok], [B q1.deq()], [B q1.Ok(2)]H|q1 =

[A q1.enq(2)], [A q1.Ok], [A q2.deq()], [A q2.Ok(5)]H|A =

• a response matches an invocation if their object and thread
names agree

• a history is sequential if it starts with an invocation, and
each invocation (except possibly the last) is immediately
followed by a matching response

• a sequential history is legal if it agrees with the sequential
specification of each object

66

Formal definitions

[A q.enq(2)], [A q.Ok], [B q.enq(5)], [B q.Ok]H =

• a call op1 precedes another call op2 (op1 -> op2) if op1’s
response event occurs before op2’s invocation event

• we write ->H for the precedence relation induced by H

 => e.g. q.enq(2) ->H q.enq(5)

• an invocation is pending if it has no matching response

• a history is complete if it does not have pending responses

• complete(H) is the subhistory of H with all pending
invocations removed

67

Formal definitions

Linearizability: the definition

• two histories H and G are equivalent if H|A = G|A for all
threads A

• a history H is linearizable if it can be extended to a history
G by adding zero or more response events, such that:

 => complete(G) is equivalent to some legal sequential history S
 => ->H ⊆ ->S (i.e. the precedences of H are maintained)

Linearizability: the definition

• two histories H and G are equivalent if H|A = G|A for all
threads A

• a history H is linearizable if it can be extended to a history
G by adding zero or more response events, such that:

 => complete(G) is equivalent to some legal sequential history S
 => ->H ⊆ ->S (i.e. the precedences of H are maintained)

H b

a

c

S

->H = {a -> c, b -> c} ->S = {a -> b, a -> c, b -> c}

A

B

Next on the agenda

70

1. concurrent objects and correctness

2. quiescent and sequential consistency

3. linearizability

Final remarks

• correctness notions for concurrent objects boil down to
“equivalences” with sequential computations

 => quiescent consistency, sequential consistency, linearizability
 => objects we built in previous weeks were linearizable

• correctness conditions depend on the application’s needs

• in most modern multiprocessor architectures, memory
reads/writes are not sequentially consistent

 => too expensive!
 => must “ask” for it explicitly when needed

71

Lecture based on Chapter 3 of:

recommended reading!

