Concepts of Concurrent Computation
Spring 2015

| ecture 10: CCS

Sebastian Nanz
Chris Poskitt

Chair of v
@Software Engineering ETH:zurich

Process calcull

= Question: Why do we need a theoretical model of concurrent
computation?

= Turing machines or the A-calculus have proved to be useful
models of sequential systems

» Abstracting away from implementation details yields general
Insights into programming and computation

= Process calculi help to focus on the essence of concurrent
systems: interaction

The Calculus of Communicating Systems

We study the Calculus of Communicating Systems (CCS)
[Milner 1980]

Milner's general model:
= A concurrent system is a collection of processes

= A process is an independent agent that may perform internal
activities in isolation or may interact with the environment to perform
shared activities

Milner's insight: Concurrent processes have an algebraic
structure

P1lop|P2| = |P1opP2

This is why a process calculus is sometime called a process
algebra

Example: A simple process

= A coffee and tea machine may take an order for either tea or

coffee, accept the appropriate payment, pour the ordered
drink, and terminate:

tea.coin.cup_of _tea.0 + coffee.coin.coin.cup_of _coffee.0

= We have the following elements of syntax:
= Actions: tea, cup_of_tea, etc.
= Seqguential composition: the dot “.” (first do action tea, then coin, ...)

= Non-deterministic choice: the plus “+” (either do tea or coffee)
= Terminated process: O

Example: Execution of a simple process

= When a process executes it performs some action, and
becomes a new process

= The execution of an action a is symbolized by a transition —

tea.coin.cup_of _tea.0 + coffee.coin.coin.cup_of _coffee.0
tea

— coin.cup_of _tea.0
= cup_of _tea.0
cup-of _tea
g 0

Syntax of CCS

Syntax of CCS

= Goal: In the following we introduce the syntax of CCS step-by-
step

» Basic principle
1. Define atomic processes that model the simplest possible behavior

2. Define composition operators that build more complex behavior
from simpler ones

The terminal process

= The simplest possible behavior is no behavior

= We write 0 (pronounced “nil”) for the terminal or inactive
process

= 0 models a system that is either deadlocked or has terminated
= Qs the only atomic process of CCS

Names and actions

= We assume an infinite set A of port names, and a set
A ={a|ae A} of complementary port names

Input actions

= When modeling we use a name a to denote an input action, i.e. the
receiving of input from the associated port a

Qutput actions

= We use a co-name a to denote an output action, i.e. the sending of
output to the associated port a

Internal actions
= We use T1to denote the distinguished internal action

The set of actions Actis given by Act = AU AU {7}

Action prefixing

= The simplest actual behavior is sequential behavior

= Action prefixing
= |f Pis a process we write

a.P

to denote the prefixing of P with the action o

= «a.P models a system that is ready to perform the action, «,
and then behaves as P, i.e.

a.P = P

10

Example: Action prefixing

= A process that starts a timer, performs some internal
computation, and then stops the timer:

go.71.stop.0 £, T.stop.0 — stop.0 SR 0

11

Process interfaces

= |nterfaces

» The set of input and output actions that a process P may perform in
isolation constitutes the interface of P

» The interface enumerates the ports that P may use to interact with
the environment

» Example: The interface of the coffee and tea machine is

tea, coffee, coin, cup_of _tea, cup_of _coffee

12

Non-deterministic choice

= A more advanced sequential behavior is that of alternative
behaviors

= Non-deterministic choice
= |f Pand Q are processes then we write

P+ Q

to denote the non-deterministic choice between Pand Q

= P+ @ models a process that can either behave as P
(discarding Q) or as Q (discarding P)

13

Example: Non-deterministic choice

tea.coin.cup_of _tea.0 + coffee.coin.coin.cup_of _coffee.0

tea .
— coin.cup_of _tea.

= Note

» Prefixing binds harder than plus
= The choice is made by the initial coffee / tea button press

14

Process constants and recursion

* The most advanced sequential behavior is recursive behavior

= Process constants
= A process may be the invocation of a process constant, K € IC

= This is only meaningful if K is defined beforehand

= Recursive definition
» |f K is a process constant and Pis a process we write

K< p

to give a recursive definition of the behavior of K
(recursive if Pinvokes K)

15

Example: Recursion (1)

= A system clock, SC, sends out regular clock signals forever:

sC & Fiek.sC

= The system SC may behave as:

tick tick

tick. SC — SC —

16

Example: Recursion (2)

= A fully automatic coffee and tea machine CTM

oM & tea.coin.cup_of _tea.CTM + coffee.coin.coin.cup_of _coffee. CTM

= The system CTM may e.g. do:
tea.coin.cup_of _tea.C'TM + coffee.coin.coin.cup_of _coffee. CTM

tea

S coin.cup_of _tea.CTM

= cup_of _tea.CTM
cupﬂgtea CTM

2,

= This will serve drinks ad infinitum

17

Parallel composition

= Finally: concurrent behavior

= Parallel composition
= |f Pand Q are processes we write

P|Q

to denote the parallel composition of Pand Q

= P| @ models a process that behaves like Pand Q in parallel:

» Each may proceed independently

= |f Pis ready to perform an action a and Q is ready to perform the
complementary action a, they may interact

18

Example: Parallel composition

= Recall the coffee and tea machine:

oM & tea.coin.cup_of _tea.CTM + coffee.coin.coin.cup_of _coffee. CTM
= Now consider a regular customer, the Computer Scientist CS:

cs & tea.coin.cup_of _tea.teach.CS

+ coffee.coin.coin.cup_of _coffee.publish.CS

= CS must drink coffee to publish
= CS can only teach on tea

19

Example: Parallel composition

= On an average Tuesday morning the system
CTM | CS

is likely to behave as follows:

(tea.coin.cup-of _tea.CTM + coffee.coin.coin.cup_of _coffee. CTM)

| (tea.coin.cup_of _tea.teach.CS + coffee.coin.coin.cup_of _coffee.publish.CS)
(coin.cup_of _tea.CTM) | (coin.cup_of _tea.teach.CS)

(cup-of _tea.CTM) | (cup-of _tea.teach.CS)
CTM | (teach.CS)
teach

— CTM|CS

ANANA

Note that the synchronisation of actions such as tea/ teais
expressed by a T-action (i.e. regarded as an internal step)

20

Restriction

= We control unwanted interactions with the environment by
restricting the scope of port names

= Restriction
= if Pis a process and A is a set of port names we write

P~ A

for the restriction of the scope of each name in Ato P

* Removes each name a € A and the corresponding co-name
a from the interface of P

= Makes each name a € A and the corresponding co-name a
iInaccessible to the environment

21

Example: Restriction

» Recall the coffee and tea machine and the computer scientist:
CTM | CS

» Restricting the coffee and tea machine on coffee makes the
coffee-button inaccessible to the computer scientist:

(CTM ~\ {coffee}) | CS

= As a conseguence CS can only teach, and never publish

22

Summary: Syntax of CCS

P:= K process constants (K € K)
a.P prefixing (o € Act)
>ict Pi summation (/ is an arbitrary index set)
P1| P> parallel composition
P~ L restriction (L C A)

» The set of all terms generated by the abstract syntax is called
CCS process expressions

= Notation

P1 + P2 — Zie{l,z} Pi Nil =0 = ZiE(Z) P,-

23

CCS programs

CCS program

= A collection of defining equations of the form

K p

where K € KCis a process constant and P € Pis a CCS process
expression

Only one defining equation per process constant

Recursion is allowed: e.g. A< 3.A | A

The program itself gives only the definitions of process
constants: we can only execute processes (which can
however mention the process constants defined in the
program)

24

Exercise: Syntax of CCS

= Which of the following expressions are correctly built CCS
expressions?

= Assume that A, B are process constants and that a, b are port
names

a.b.A + B

(a.0 + 3.A) ~ {a, b}
(a.0|3.A) ~{a, 7} X
7.7.B + 0

(a.b.A + 3.0)|B
(a.b.A + 3.0).B X

25

Operational Semantics of CCS

Operational semantics

= (Goal: Formalize the execution of a CCS process

Syntax
CCS
(process term + equations)

27

Semantics
LTS
(labelled transition systems)

Labelled transition systems

= A labelled transition system (LTS) is a triple
(Proc, Act, {—=| o € Act}) where

= Proc is a set of processes (the states),
= Actis a set of actions (the labels), and

= forevery a € Act, — C Proc x Proc is a binary relation on
processes called the transition relation

= We use the infix notation P % P’ to say that (P, P') € —

= |tis customary to distinguish the initial process (the start state)

28

Labelled transition systems

= Conceptually it is often beneficial to think of a (finite) LTS as
something that can be drawn as a directed (process) graph

= Processes are the nodes
= Transitions are the edges

= Example: The LTS
({P,Q,RY,{a, b7}, {P 25 QP 2 R Q I R}

corresponds to the graph 0
/ \7’
P * R

= Question: How can we produce an LTS (semantics) of a
process term (syntax)?

29

Informal translation

= Terminal process: 0
behavior: 0 —/~

= Action prefixing: «o.P

behavior: «.P . P
= Non-deterministic choice: oa.P + 3.Q
behavior: P —— a.P + B.Q L Q
= Recursion: X def .. QL X
behavior: /—\
X a.X
‘\/

87

30

Informal translation

= Parallel composition: a@.P|(3.Q

= Combines sequential composition and choice to obtain
interleaving
PB.Q

4 \

behavior: a.P|p.Q

N /

a.P|Q

= \What about interaction?

31

Process interaction

= Concurrent processes, i.e. Pand Qin P | Q, may interact
where their interfaces are compatible

» A synchronizing interaction between two processes (sub-
systems), Pand Q, is an activity that is internal to P | @

= Parallel composition: «a.P |[5.Q

= Allows interactionif 8 =«
P|3.Q

4 \

behavior: a.P|3.Q

\/

a.P|Q@

32

Structural operational semantics for CCS

= Structural operational semantics (SOS) [Plotkin 1981]
= Small-step operational semantics where the behavior of a system is
inferred using syntax driven rules

= Given a collection of CCS defining equations, we define the
LTS (Proc, Act,{-2+| a € Act})

= Procis the set of all CCS process expressions
= Actis the set of all CCS actions including
= the transition relation is given by SOS rules of the form:

premises

RULE conditions

conclusion

33

SOS rules for CCS

P, — P
ACT — SUM,; —L— jel
a.P — P > e Pi P
com — PP com — Q@ — ¢
P|Q — P'|Q P|Q — P|Q’
a / a /
PIQ — P'|Q
« «
Res — P —FP ,a¢lL con B—=P yxdp

PNL— P L K— P

34

Example: Derivations

» Let A% 2. A. Show that ((A]3.0) | b.0) -2 ((A]3.0)| b.0)

ACT _
a.A— A def
CON A= aA

A5 A
COM1 _
Al3.0 =5 A|3.0
(A]3.0)|b.0 = (A|3.0)] b.0

COM1

35

Restriction and interaction

= Restriction can be used to produce closed systems, i.e. their
actions can only be taken internally (visible as T-actions)

a.0]a.0
(a.0]3.0) < {a}
AERN
a
0]3.0 ~ a0]0
a T
4 a
0]0

0[0
LTS of a.0|3.0 LTS of (a.0]3.0) \ {a}

36

Conclusion

» Process calculi provide models of concurrency, not
programming languages — for “everyday use” too many
details are abstracted away

= However, the formal techniques studied in process calculi can
help to design better concurrent programming languages

37

