
Concepts of Concurrent Computation  
Spring 2015���

���

Lecture 10: CCS!

Sebastian Nanz
Chris Poskitt

Chair of
Software Engineering

Process calculi
§  Question: Why do we need a theoretical model of concurrent

computation?!
§  Turing machines or the λ-calculus have proved to be useful

models of sequential systems!
§  Abstracting away from implementation details yields general

insights into programming and computation!
§  Process calculi help to focus on the essence of concurrent

systems: interaction!

2

The Calculus of Communicating Systems
§  We study the Calculus of Communicating Systems (CCS)

[Milner 1980]!
§  Milner's general model:!

§  A concurrent system is a collection of processes!
§  A process is an independent agent that may perform internal

activities in isolation or may interact with the environment to perform
shared activities!

§  Milner's insight: Concurrent processes have an algebraic
structure!

 op ⇒!
§  This is why a process calculus is sometime called a process

algebra!

3

P1! P2! P1 op P2!

Example: A simple process
§  A coffee and tea machine may take an order for either tea or

coffee, accept the appropriate payment, pour the ordered
drink, and terminate:!

§  We have the following elements of syntax:!
§  Actions: tea, cup_of_tea, etc.!
§  Sequential composition: the dot “.” (first do action tea, then coin, ...)!
§  Non-deterministic choice: the plus “+” (either do tea or coffee)!
§  Terminated process: 0!

4

Example: Execution of a simple process
§  When a process executes it performs some action, and

becomes a new process!
§  The execution of an action a is symbolized by a transition!

5

Syntax of CCS

Syntax of CCS
§  Goal: In the following we introduce the syntax of CCS step-by-

step!
§  Basic principle!

1.  Define atomic processes that model the simplest possible behavior!
2.  Define composition operators that build more complex behavior

from simpler ones!

7

The terminal process
§  The simplest possible behavior is no behavior!
§  We write 0 (pronounced “nil”) for the terminal or inactive

process!
§  0 models a system that is either deadlocked or has terminated!
§  0 is the only atomic process of CCS!

8

Names and actions
§  We assume an infinite set of port names, and a set !

 of complementary port names!
§  Input actions!

§  When modeling we use a name a to denote an input action, i.e. the
receiving of input from the associated port a!

§  Output actions!
§  We use a co-name a to denote an output action, i.e. the sending of

output to the associated port a!

§  Internal actions!
§  We use τ to denote the distinguished internal action!

§  The set of actions Act is given by!

9

Action prefixing
§  The simplest actual behavior is sequential behavior!
§  Action prefixing!

§  If P is a process we write !

 to denote the prefixing of P with the actionα

§  models a system that is ready to perform the action,α,
and then behaves as P, i.e.!

10

Example: Action prefixing
§  A process that starts a timer, performs some internal

computation, and then stops the timer:!

11

Process interfaces
§  Interfaces!

§  The set of input and output actions that a process P may perform in
isolation constitutes the interface of P!

§  The interface enumerates the ports that P may use to interact with
the environment!

§  Example: The interface of the coffee and tea machine is!

12

Non-deterministic choice
§  A more advanced sequential behavior is that of alternative

behaviors!
§  Non-deterministic choice!

§  If P and Q are processes then we write !

 to denote the non-deterministic choice between P and Q!

§  models a process that can either behave as P
(discarding Q) or as Q (discarding P)!

13

Example: Non-deterministic choice

§  Note!
§  Prefixing binds harder than plus!
§  The choice is made by the initial coffee / tea button press!

14

Process constants and recursion
§  The most advanced sequential behavior is recursive behavior!
§  Process constants!

§  A process may be the invocation of a process constant, !
§  This is only meaningful if K is defined beforehand!

§  Recursive definition!
§  If K is a process constant and P is a process we write!

!

 to give a recursive definition of the behavior of K !
 (recursive if P invokes K)!

15

Example: Recursion (1)
§  A system clock, SC, sends out regular clock signals forever:!

§  The system SC may behave as:!

16

Example: Recursion (2)
§  A fully automatic coffee and tea machine CTM !

§  The system CTM may e.g. do:!

!
§  This will serve drinks ad infinitum!

17

Parallel composition
§  Finally: concurrent behavior!
§  Parallel composition!

§  If P and Q are processes we write!

 to denote the parallel composition of P and Q!

§  models a process that behaves like P and Q in parallel:!
§  Each may proceed independently!
§  If P is ready to perform an action a and Q is ready to perform the

complementary action a, they may interact!

18

Example: Parallel composition
§  Recall the coffee and tea machine:!

§  Now consider a regular customer, the Computer Scientist CS:!

§  CS must drink coffee to publish!
§  CS can only teach on tea!

19

Example: Parallel composition
§  On an average Tuesday morning the system!
!
 is likely to behave as follows:!

§  Note that the synchronisation of actions such as tea / tea is
expressed by a τ-action (i.e. regarded as an internal step)!

20

Restriction
§  We control unwanted interactions with the environment by

restricting the scope of port names!
§  Restriction!

§  if P is a process and A is a set of port names we write!

 for the restriction of the scope of each name in A to P!

§  Removes each name a ∈ A and the corresponding co-name
a from the interface of P!

§  Makes each name a ∈ A and the corresponding co-name a
inaccessible to the environment!

21

Example: Restriction
§  Recall the coffee and tea machine and the computer scientist:!

§  Restricting the coffee and tea machine on coffee makes the
coffee-button inaccessible to the computer scientist:!

§  As a consequence CS can only teach, and never publish!

22

Summary: Syntax of CCS

§  The set of all terms generated by the abstract syntax is called
CCS process expressions!

§  Notation!

23

CCS programs
§  CCS program!

§  A collection of defining equations of the form!

 where is a process constant and is a CCS process!
 expression!

§  Only one defining equation per process constant!
§  Recursion is allowed: e.g. !
§  The program itself gives only the definitions of process

constants: we can only execute processes (which can
however mention the process constants defined in the
program)!

24

Exercise: Syntax of CCS
§  Which of the following expressions are correctly built CCS

expressions?!
§  Assume that A, B are process constants and that a, b are port

names!

25

✅	

✅	

✅	

✅	

❌	

❌	

Operational Semantics of CCS

Operational semantics
§  Goal: Formalize the execution of a CCS process!

Syntax!
CCS!
(process term + equations)!

Semantics!
LTS!
(labelled transition systems)!

27

Labelled transition systems
§  A labelled transition system (LTS) is a triple !

 where!
§  Proc is a set of processes (the states),!
§  Act is a set of actions (the labels), and!
§  for every is a binary relation on

processes called the transition relation!

§  We use the infix notation to say that!
§  It is customary to distinguish the initial process (the start state)!

28

Labelled transition systems
§  Conceptually it is often beneficial to think of a (finite) LTS as

something that can be drawn as a directed (process) graph!
§  Processes are the nodes!
§  Transitions are the edges!

§  Example: The LTS!
!
 corresponds to the graph!

§  Question: How can we produce an LTS (semantics) of a
process term (syntax)?!

29

Informal translation
§  Terminal process: 0
 behavior: !
§  Action prefixing: !
 behavior: !
§  Non-deterministic choice: !
 behavior: !
§  Recursion: !
 behavior: !

30

Informal translation
§  Parallel composition:!
§  Combines sequential composition and choice to obtain

interleaving!

!
 behavior: !

§  What about interaction?!

31

Process interaction
§  Concurrent processes, i.e. P and Q in , may interact

where their interfaces are compatible!
§  A synchronizing interaction between two processes (sub-

systems), P and Q, is an activity that is internal to !
§  Parallel composition: !
§  Allows interaction if !
!
!
 behavior:!

32

Structural operational semantics for CCS
§  Structural operational semantics (SOS) [Plotkin 1981]!

§  Small-step operational semantics where the behavior of a system is
inferred using syntax driven rules!

§  Given a collection of CCS defining equations, we define the
LTS!
§  Proc is the set of all CCS process expressions!
§  Act is the set of all CCS actions including !
§  the transition relation is given by SOS rules of the form:!

33

SOS rules for CCS

34

Example: Derivations
§  Let . Show that!

35

Restriction and interaction
§  Restriction can be used to produce closed systems, i.e. their

actions can only be taken internally (visible as τ-actions)!

36

Conclusion
§  Process calculi provide models of concurrency, not

programming languages – for “everyday use” too many
details are abstracted away!

§  However, the formal techniques studied in process calculi can
help to design better concurrent programming languages!

37

