Concepts of Concurrent Computation Spring 2015 Lecture 10: CCS

> Sebastian Nanz Chris Poskitt

Chair of Software Engineering

Process calculi

- Question: Why do we need a theoretical model of concurrent computation?
- Turing machines or the λ-calculus have proved to be useful models of sequential systems
- Abstracting away from implementation details yields general insights into programming and computation
- Process calculi help to focus on the essence of concurrent systems: interaction

The Calculus of Communicating Systems

- We study the Calculus of Communicating Systems (CCS) [Milner 1980]
- Milner's general model:
 - A concurrent system is a collection of processes
 - A process is an independent agent that may perform internal activities in isolation or may interact with the environment to perform shared activities
- Milner's insight: Concurrent processes have an algebraic structure

P1 op P2
$$\Rightarrow$$
 P1 op P2

 This is why a process calculus is sometime called a process algebra

Example: A simple process

 A coffee and tea machine may take an order for either tea or coffee, accept the appropriate payment, pour the ordered drink, and terminate:

tea.coin.cup_of_tea.0 + *coffee.coin.coin.cup_of_coffee*.0

- We have the following elements of syntax:
 - Actions: *tea*, *cup_of_tea*, etc.
 - Sequential composition: the dot "." (first do action *tea*, then *coin*, ...)
 - Non-deterministic choice: the plus "+" (either do tea or coffee)
 - Terminated process: 0

Example: Execution of a simple process

- When a process executes it performs some action, and becomes a new process
- The execution of an action *a* is symbolized by a transition \xrightarrow{a}

$$\begin{array}{ccc} tea.coin.\overline{cup_of_tea}.0 + coffee.coin.coin.\overline{cup_of_coffee}.0 \\ & \xrightarrow{tea} & coin.\overline{cup_of_tea}.0 \\ & \xrightarrow{coin} & \overline{cup_of_tea}.0 \\ & & \overline{cup_of_tea} & 0 \end{array}$$

Syntax of CCS

Syntax of CCS

- Goal: In the following we introduce the syntax of CCS step-bystep
- Basic principle
 - 1. Define atomic processes that model the simplest possible behavior
 - 2. Define composition operators that build more complex behavior from simpler ones

The terminal process

- The simplest possible behavior is no behavior
- We write 0 (pronounced "nil") for the terminal or inactive process
 - 0 models a system that is either deadlocked or has terminated
 - 0 is the only atomic process of CCS

Names and actions

- We assume an infinite set \mathcal{A} of port names, and a set $\overline{\mathcal{A}} = \{\overline{a} \mid a \in \mathcal{A}\}$ of complementary port names
- Input actions
 - When modeling we use a name a to denote an input action, i.e. the receiving of input from the associated port a
- Output actions
 - We use a co-name a to denote an output action, i.e. the sending of output to the associated port a
- Internal actions
 - We use τ to denote the distinguished internal action
- The set of actions *Act* is given by $Act = A \cup \overline{A} \cup \{\tau\}$

Action prefixing

- The simplest actual behavior is sequential behavior
- Action prefixing
 - If *P* is a process we write

$\alpha.P$

to denote the prefixing of P with the action α

 α.P models a system that is ready to perform the action, α, and then behaves as P, i.e.

$$\alpha.P \xrightarrow{\alpha} P$$

Example: Action prefixing

 A process that starts a timer, performs some internal computation, and then stops the timer:

$$\overline{go}.\tau.\overline{stop}.0 \xrightarrow{\overline{go}} \tau.\overline{stop}.0 \xrightarrow{\tau} \overline{stop}.0 \xrightarrow{\tau} 0$$

Process interfaces

- Interfaces
 - The set of input and output actions that a process P may perform in isolation constitutes the interface of P
 - The interface enumerates the ports that P may use to interact with the environment
- Example: The interface of the coffee and tea machine is

tea, *coffee*, *coin*, *cup_of_tea*, *cup_of_coffee*

Non-deterministic choice

- A more advanced sequential behavior is that of alternative behaviors
- Non-deterministic choice
 - If *P* and *Q* are processes then we write

P + Q

to denote the non-deterministic choice between *P* and *Q*

 P + Q models a process that can either behave as P (discarding Q) or as Q (discarding P)

Example: Non-deterministic choice

 $\begin{array}{rcl} tea.coin.\overline{cup_of_tea}.0 + coffee.coin.coin.\overline{cup_of_coffee}.0\\ \xrightarrow{tea} & coin.\overline{cup_of_tea}. \end{array}$

- Note
 - Prefixing binds harder than plus
 - The choice is made by the initial *coffee / tea* button press

Process constants and recursion

- The most advanced sequential behavior is recursive behavior
- Process constants
 - A process may be the invocation of a process constant, $K \in \mathcal{K}$
 - This is only meaningful if K is defined beforehand
- Recursive definition
 - If K is a process constant and P is a process we write

$$\mathbf{K} \stackrel{\mathsf{def}}{=} \boldsymbol{P}$$

to give a recursive definition of the behavior of K (recursive if *P* invokes K)

Example: Recursion (1)

• A system clock, SC, sends out regular clock signals forever:

 $SC \stackrel{\mathsf{def}}{=} \overline{tick}.SC$

• The system SC may behave as:

$$\overline{\textit{tick}}$$
.SC $\xrightarrow{\overline{\textit{tick}}}$ SC $\xrightarrow{\overline{\textit{tick}}}$...

Example: Recursion (2)

- A fully automatic coffee and tea machine CTM $CTM \stackrel{\text{def}}{=} tea.coin.\overline{cup_of_tea}.CTM + coffee.coin.coin.\overline{cup_of_coffee}.CTM$
- The system CTM may e.g. do:

tea.coin.cup_of_tea.CTM + *coffee.coin.coin.cup_of_coffee*.CTM

\xrightarrow{tea}	<i>coin.cup_of_tea</i> .CTM
\xrightarrow{coin}	<i>cup_of_tea</i> .CTM
$\xrightarrow{cup_of_tea}$	CTM
$\xrightarrow{\alpha}$	

This will serve drinks ad infinitum

Parallel composition

- Finally: concurrent behavior
- Parallel composition
 - If P and Q are processes we write

$P \mid Q$

to denote the parallel composition of P and Q

- $P \mid Q$ models a process that behaves like P and Q in parallel:
 - Each may proceed independently
 - If P is ready to perform an action a and Q is ready to perform the complementary action a, they may interact

Example: Parallel composition

Recall the coffee and tea machine:

 $CTM \stackrel{\mathsf{def}}{=} \textit{tea.coin.cup_of_tea}.CTM + \textit{coffee.coin.coin.cup_of_coffee}.CTM$

• Now consider a regular customer, the Computer Scientist CS:

$$CS \stackrel{\text{def}}{=} \frac{\overline{tea}.\overline{coin}.cup_of_tea}.\overline{teach}.CS + \overline{coffee}.\overline{coin}.\overline{coin}.cup_of_coffee}.\overline{publish}.CS$$

- CS must drink coffee to publish
- CS can only teach on tea

Example: Parallel composition

On an average Tuesday morning the system
 CTM | CS

is likely to behave as follows:

(tea.coin.cup_of_tea.CTM + coffee.coin.coin.cup_of_coffee.CTM)

(*tea*.*coin*.*cup_of_tea*.*teach*.CS + *coffee*.*coin*.*coin*.*cup_of_coffee*.*publish*.CS)

- $\stackrel{\tau}{\longrightarrow} \quad (coin.cup_of_tea.CTM) | (\overline{coin}.cup_of_tea.teach.CS) |$
- $\stackrel{\tau}{\longrightarrow} \quad (\overline{cup_of_tea}.CTM) | (cup_of_tea.\overline{teach}.CS)$

$$\xrightarrow{\tau}$$
 CTM | (*teach*.CS)

 $\stackrel{teach}{\longrightarrow}$ CTM | CS

 Note that the synchronisation of actions such as *tea / tea* is expressed by a τ-action (i.e. regarded as an internal step)

Restriction

- We control unwanted interactions with the environment by restricting the scope of port names
- Restriction
 - if *P* is a process and *A* is a set of port names we write

$P \smallsetminus A$

for the restriction of the scope of each name in A to P

- Removes each name $a \in A$ and the corresponding co-name \overline{a} from the interface of P
- Makes each name $a \in A$ and the corresponding co-name \overline{a} inaccessible to the environment

Example: Restriction

- Recall the coffee and tea machine and the computer scientist: $\rm CTM\,|\,CS$
- Restricting the coffee and tea machine on *coffee* makes the coffee-button inaccessible to the computer scientist:

 $\left(\mathrm{CTM}\smallsetminus\left\{\textit{coffee}\right\}\right)\big|\,\mathrm{CS}$

• As a consequence CS can only teach, and never publish

Summary: Syntax of CCS

$$P ::= K$$

$$\alpha . P$$

$$\sum_{i \in I} P_i$$

$$P_1 | P_2$$

$$P > I$$

process constants ($K \in \mathcal{K}$) prefixing ($\alpha \in Act$) summation (I is an arbitrary index set) parallel composition restriction ($L \subseteq \mathcal{A}$)

- The set of all terms generated by the abstract syntax is called CCS process expressions
- Notation

$$P_1 + P_2 = \sum_{i \in \{1,2\}} P_i$$
 $Nil = 0 = \sum_{i \in \emptyset} P_i$

CCS programs

- CCS program
 - A collection of defining equations of the form

$$K \stackrel{\mathrm{def}}{=} P$$

where $\mathrm{K}\in\mathcal{K}$ is a process constant and $P\in\mathcal{P}$ is a CCS process expression

- Only one defining equation per process constant
- Recursion is allowed: e.g. $A \stackrel{\text{def}}{=} \overline{a}.A \mid A$
- The program itself gives only the definitions of process constants: we can only execute processes (which can however mention the process constants defined in the program)

Exercise: Syntax of CCS

- Which of the following expressions are correctly built CCS expressions?
 - Assume that A, B are process constants and that a, b are port names

 $a.b.A + B \checkmark$ $(a.0 + \overline{a}.A) \smallsetminus \{a, b\} \checkmark$ $(a.0 | \overline{a}.A) \smallsetminus \{a, \tau\} \checkmark$ $\tau.\tau.B + 0 \checkmark$ $(a.b.A + \overline{a}.0) | B \checkmark$ $(a.b.A + \overline{a}.0).B \checkmark$

Operational Semantics of CCS

Operational semantics

• Goal: Formalize the execution of a CCS process

Labelled transition systems

- A labelled transition system (LTS) is a triple $(Proc, Act, \{\stackrel{\alpha}{\longrightarrow} | \alpha \in Act\})$ where
 - Proc is a set of processes (the states),
 - Act is a set of actions (the labels), and
 - for every $\alpha \in Act$, $\xrightarrow{\alpha} \subseteq Proc \times Proc$ is a binary relation on processes called the transition relation
- We use the infix notation $P \xrightarrow{\alpha} P'$ to say that $(P, P') \in \xrightarrow{\alpha}$
- It is customary to distinguish the initial process (the start state)

Labelled transition systems

- Conceptually it is often beneficial to think of a (finite) LTS as something that can be drawn as a directed (process) graph
 - Processes are the nodes
 - Transitions are the edges
- Example: The LTS

 $\{\{P,Q,R\},\{a,b,\tau\},\{P \xrightarrow{a} Q,P \xrightarrow{b} R,Q \xrightarrow{\tau} R\}\}$

corresponds to the graph

Question: How can we produce an LTS (semantics) of a process term (syntax)?

Informal translation

- Terminal process: 0
 behavior: 0 →
- Action prefixing: $\alpha . P$ behavior: $\alpha . P \xrightarrow{\alpha} P$
- Non-deterministic choice: $\alpha . P + \beta . Q$ behavior: $P \xleftarrow{\alpha} \alpha . P + \beta . Q \xrightarrow{\beta} Q$
- Recursion: $X \stackrel{\text{def}}{=} \cdots .\alpha . X$ behavior:

Informal translation

- Parallel composition: $\alpha . P \mid \beta . Q$
- Combines sequential composition and choice to obtain interleaving

What about interaction?

Process interaction

- Concurrent processes, i.e. P and Q in $P \mid Q$, may interact where their interfaces are compatible
- A synchronizing interaction between two processes (subsystems), P and Q, is an activity that is internal to P | Q
- Parallel composition: $\alpha . P \mid \beta . Q$
- Allows interaction if $\beta = \overline{\alpha}$

Structural operational semantics for CCS

- Structural operational semantics (SOS) [Plotkin 1981]
 - Small-step operational semantics where the behavior of a system is inferred using syntax driven rules
- Given a collection of CCS defining equations, we define the LTS (*Proc*, *Act*, $\{\stackrel{a}{\longrightarrow} | a \in Act\}$)
 - *Proc* is the set of all CCS process expressions
 - Act is the set of all CCS actions including
 - the transition relation is given by SOS rules of the form:

RULE *premises* conditions

SOS rules for CCS

ACT
$$\frac{\alpha}{\alpha \cdot P \xrightarrow{\alpha} P}$$
 SUM_j $\frac{P_j \xrightarrow{\alpha} P'_j}{\sum_{i \in I} P_i \xrightarrow{\alpha} P'_j}$ $j \in I$

$$\mathsf{COM1} \quad \frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} \qquad \qquad \mathsf{COM2} \quad \frac{Q \xrightarrow{\alpha} Q'}{P|Q \xrightarrow{\alpha} P|Q'}$$

COM3
$$\frac{P \xrightarrow{a} P' \quad Q \xrightarrow{a} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

RES
$$\xrightarrow{P \xrightarrow{\alpha} P'}_{P \smallsetminus L \xrightarrow{\alpha} P' \smallsetminus L} \alpha, \overline{\alpha} \notin L$$
 CON $\xrightarrow{P \xrightarrow{\alpha} P'}_{K \xrightarrow{\alpha} P'} K \stackrel{\text{def}}{=} P$

Example: Derivations

• Let $A \stackrel{\text{def}}{=} a.A$. Show that $((A | \overline{a}.0) | b.0) \stackrel{a}{\longrightarrow} ((A | \overline{a}.0) | b.0)$

Restriction and interaction

 Restriction can be used to produce closed systems, i.e. their actions can only be taken internally (visible as τ-actions)

Conclusion

- Process calculi provide models of concurrency, not programming languages – for "everyday use" too many details are abstracted away
- However, the formal techniques studied in process calculi can help to design better concurrent programming languages