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Strong Bisimulations



Behavioral equivalence
§  Goal: Express the notion that two concurrent systems “behave 

in the same way”!
§  We are not interested in syntactical equivalence, but only in 

the fact that the processes have the same behavior!
§  Main idea: two processes are behaviorally equivalent if and 

only if an external observer cannot tell them apart!
§  Bisimulation [Park 1980]: Two processes are equivalent if they 

have the same traces and the states that they reach are also 
equivalent!
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Strong bisimilarity
§  Let be an LTS!
§  Strong Bisimulation!

§  A binary relation R ⊆ Proc x Proc is a strong bisimulation iff 
whenever (P, Q) ∈ R then for each α∈ Act!
§   !
§   !

§  Strong Bisimilarity!
§  Two processes P1, P2 ∈ Proc are strongly bisimilar (P1 ~ P2) if and 

only if there exists a strong bisimulation R such that (P1, P2) ∈ R!
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Strong bisimilarity of CCS processes
§  The concept of strong bisimilarity is defined for LTS!
§  The semantics of CCS is given in terms of LTS, whose states 

are CCS processes!
§  Thus, the definition also applies to CCS processes!

§  Two processes are bisimilar if there is a concrete strong bisimulation 
relation that relates them!

§  To show that two processes are bisimilar it suffices to exhibit such 
concrete relation!
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Example: Strong bisimulation
§  Consider the processes P and Q with the following behavior:!

§  We claim that they are bisimilar!
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Example: Strong bisimulation
§  To show our claim we exhibit the following strong bisimulation 

relation:!

§  (P, Q) ∈ R
§  R is a bisimulation:!

§  For each pair of states in R, all possible transitions from the first can 
be matched by corresponding transitions from the second!

§  For each pair of states in R, all possible transitions from the second 
can be matched by corresponding transitions from the first!
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Example: Strong bisimulation
§  Graphically, we show R with dotted lines!

§  Now it is easy to see that!
§  for each pair of states in R, all possible transitions from the first can 

be matched by corresponding transitions from the second!
§  for each pair of states in R, all possible transitions from the second 

can be matched by corresponding transitions from the first!
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Exercise: Strong bisimulation
§  Consider the processes!

     and show that!

9



Weak Bisimulations 



Refinement
§  Further use of bisimulations: refinement of systems!
§  We would like to state that two processes Spec and Imp 

behave the same, where Imp specifies the computation in 
greater detail!

§  This is not possible with strong bisimulations, as every action 
needs to be matched in equivalent processes!

§  Key to a weaker notion of equivalence: abstract from internal 
actions!

§  Idea: an external observer who focuses on visible actions but 
ignores all internal behavior!
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Weak bisimulation (1)
§  We write P         Q if P can reach Q via an α-transition, 

preceeded and followed by zero or more τ-transitions:!

               P          P'         P’’       Q!

§  Furthermore, P        Q  holds if P = Q!
§  This definition allows us to “erase” sequences of τ-transitions 

in a new definition of behavioral equivalence: weak 
bisimulation!

⟹	  
α

⟶	  α⟶	  τ	   *	   ⟶	  τ	   *	  

⟹	  
τ	  
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Weak bisimulation (2)
§  Let (Proc, Act, {       | α ∈ Act}) be an LTS.!
§  Weak bisimulation!

A binary relation R ⊆ Proc x Proc is a weak bisimulation if !
(P, Q) ∈ R implies for all α ∈ Act!
§  if P        P' then Q        Q' for some Q’ such that (P', Q') ∈ R
§  if Q       Q' then P         P' for some P’ such that (P', Q') ∈ R

§  Weak bisimilarity!
Two processes P and Q are weakly bisimilar, P ≈ Q, if there is 
a weak bisimulation R such that (P, Q) ∈ R

⟹	  
α

⟶	  α
⟶	  α ⟹	  

α

⟶	  α
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Example: Weak bisimulation
§  Consider the following CCS processes:!

P0 = a.P0 + b.P1 + τ.P1!

P1 = a.P1 + τ.P2!

P2 = b.P0!

Q1 = a.Q1 + τ.Q2!

Q2 = b.Q1!

§  Is P0 ≈ Q1 ?!

Yes, since {(P0, Q1), (P1, Q1), (P2, Q2)} is a weak bisimulation.!
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Value Passing



Value-passing CCS
§  For modeling, it is often helpful to be able to express that 

values can be passed when processes are synchronizing!
§  For example, a buffer of size one can be modeled as follows:!

Buffer = append(x).remove(x).Buffer!

§  The value transmitted over channel append is bound to 
variable x!

§  For example, if the value is d then we get in the next step:!
remove(d).Buffer!
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Example: Producers-consumers in CCS
§  Buffer of size two!

Buffer           = append(x).Buffer1(x)!
Buffer1(x)     = remove(x).Buffer + append(y).Buffer2(x, y)!
Buffer2(x, y) = remove(x).Buffer1(y)!

§  Producers and Consumers!
Producer(x) = append(x).Producer(x + 1)!
Consumer = remove(x).Consumer!

§   Full system!
(Producer(0) | Buffer | Consumer) \ {append, remove}!
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Superfluity of value-passing
§  It can be shown that the original calculus is just as expressive 

as the value-passing calculus!
§  We demonstrate the main argument of this proof by example: 

we translate a process with value-passing into one without!
Buffer = append(x).Buffer1(x)!
Buffer1(x) = remove(x).Buffer!

§  Fix a set of values, e.g. Booleans, to be stored in the buffer; 
then the following process is equivalent:!
Buffer = append0.Buffer10 + append1.Buffer11 !

Buffer10= remove0.Buffer!
Buffer11= remove1.Buffer!

§  In general, this requires infinite summations and infinitely 
many equations!
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The π-calculus



Limitations of CCS
§  In CCS all communication links are static!
§  This leads to problems when trying to model dynamically 

changing systems!
§  Example: a server S increments every value it receives!

S = a(x).a(x + 1).0 | S!

§  If processes try to access the server, the responses may not 
be correctly matched!
a(3).a(x).P(x) | a(5).a(y).Q(y) | S         ...        P(6) | Q(4) | ...!⟶	   ⟶	  
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Names
§  To remove the limitation of CCS, the π-calculus allows values 

to include channel names!
§  The incrementation server can be reprogrammed as!

S = a(x, b).b⟨x + 1⟩.0 | S!

§  Note the use of angle brackets ⟨ ... ⟩ to denote the output tuple!
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Restriction
§  The restriction operator P \ L of CCS is overly restrictive!
§  We would also like that channels can be passed outside their 

original scope!
§  In the π-calculus, the restriction (or creation) operator is 

written!
(new x) P!

     and creates a new name x with scope P!
§  The name can however be communicated outside its original 

scope (scope extrusion), changing the scope of the binder:!
(new y)( x⟨y⟩ | y(v).P(v) )   |   x(u).u⟨2⟩ !
         (new y) ( y(v).P(v) | y⟨2⟩)!

       (new y)( P(2) )!
⟶	  
⟶	  
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Syntax of the π-calculus
§  Action prefixes!

π ::= x(y) receive y along x!
     |   x⟨y⟩ send y along x!
     |   τ unobservable action!

§  Process syntax!
P ::= ∑ πi.Pi summation!
      |  P1 | P2 parallel!
      |  (new x) P new name creation!
      |  !P replication!
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Structural congruence
§  Two expressions are structurally congruent, written !

P ≡ Q, if they can be transformed into the other using the 
following rules:!
1.  Renaming of bound variables (alpha-conversion)!
2.  Reordering of terms in a summation!
3.  Associativity and commutativity of parallel!

P | 0 ≡ P!
4.   (new x) (P | Q) ≡ P | (new x) Q   if x not free in P!

(new x) 0 ≡ 0!
(new x) (new y) P ≡ (new y) (new x) P!

5.  !P ≡ P | !P!
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Reaction semantics

TAU  τ.P + M → P!

REACT   x(y).P + M | x⟨z⟩.Q + N → P[z/y] | Q!

       P → P'!
P | Q → P' | Q !PAR!

            P → P'!
(new x) P → (new x) P'!RES!

 Q ≡ P     P → P'   P' ≡ Q'!
               Q → Q' !STRUCT!
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Equivalence
§  An appropriate notion of process equivalence P ≃ Q for the π-

calculus:!
§  preserves the equivalence in all contexts!
§  means that we can make the same observations for P and for Q!
§  implies that P and Q mimic their reaction steps!

§  The equivalence can be developed formally as in the case of 
CCS, with some complications due to the reaction semantics 
(other than in the labeled semantics, the observables are not 
exposed by the transitions)!
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Expressiveness
§   Small calculus, but very expressive:!

§  encoding of data structures!
§  encoding functions as processes!
§  encoding higher-order behavior!
§  encoding polyadic with monadic communication!
§  ...!
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Conclusion
§  Many “fundamental” models of concurrency: CCS, π-calculus, 

CSP (Communicating Sequential Processes)!
§  The reason for this is that there are many forms of 

concurrency one might like to describe!
§  The π-calculus takes mobility into account, which is not the 

case for CCS and CSP!
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