Concepts of Concurrent Computation
Spring 2015

Lecture 13: Concurrent Languages

Sebastian Nanz
Chris Poskitt

Chair of v
@Software Engineering ETH:zurich



Classification



Concurrent and parallel languages

» Developers today have the choice among a multitude of
different approaches to concurrent and parallel programming

/Message passing N\
ﬂ_anguage - \ /Library \
Ada MPI
Occam
\ Polyphonic C# SCOOP /
Java/C# threads Gl \
Pthreads
L inda OpenI\/IP
\_ AN Y,

kShared memory /




Message-passing approaches



Ada



Ada

= Object-oriented language, influenced by Pascal, developed
from 1975 by US Department of Defence, standards: Ada83,
Ada95, Ada 2005

= Design goals: highly reliable systems, reusable components,
concurrency part of the language

= Named after Ada Lovelace (1815-1852), “the first computer
programmer”

= Supports concurrent execution via tasks, which can have
entries for synchronous message-passing communication

= Ada also offers shared memory synchronization via protected
objects, a monitor-like mechanism where condition variables
are replaced with guards



Ada tasks

» Tasks are declared within procedures
» Two parts: task specification, task implementation

= Tasks are activated when the procedure starts executing

procedure SimpleProc is
task type SimpleTask;

task body SimpleTask is
begin

end SimpleTask;

taskA, taskB: SimpleTask;
begin

nhull;
end SimpleProc;



Process communication: Rendezvous (1)

» Uses synchronous communication, called the “rendezvous”™

= Entry points (declared in the type declaration) specify the
actions a task can synchronize on

task type SimpleTask is
entry MyEntry;
end SimpleTask;



Process communication: Rendezvous (2)

= accept-statements (within the task body) indicate program
points where rendezvous can take place

= (Clients invoke an entry point to initiate a rendezvous, and wait
for the accepting task to reach a corresponding entry point

task body SimpleTask is declare
begin T: SimpleTask;
600 begin
accept MyEntry do coe
-- body of rendezvous T.MyEntry;
end MyEntry; -- wait until T reaches MyEntry
end SimpleTask; end SimpleTask;

= Upon establishing a rendezvous, the client waits for the
accepting task to execute the body of the rendezvous and

resumes afterward



Process communication: Rendezvous (3)

Entry points can have parameters to pass on values

accept append(x : in integer) do buffer.append(item);
end append;
select-statement allows for waiting for multiple entries

Within a select, alternatives may be guarded by boolean
expressions

Only if the guard evaluates to true the accept is permitted

select
when count < n =>
accept append(x : in integer) do

end append;
or
when ...
end

10



Example: Bounded Buffer

task body Buffer is

count, in, out: integer := 0O;
buff: array(0..n-1) of integer;
begin
loop
select

when count < n =>
accept append(x : in integer) do
buff(in) := x;
end append;
in := (in - 1) mod n; count := count + 1;
or
when count > 0 =>
accept remove(y : out integer) do
y := buff(out);
end remove;

out := (out + 1) mod n; count := count - 1;
end select;
end loop;

end buffer;

11



Protected objects

Monitor-like concept
= All data private
= Exports only procedures, functions, and entries

= [Functions may only read data, therefore multiple function
calls may be active on the same object

= Procedures and entries may read and write data, and
exclude other procedures and functions

* |nvocation of entries with guards, similar to Hoare’s
conditional critical regions

12



Conditional critical regions

Conditional critical regions provide condition synchronization
without condition variables

If S is a critical region for variable x, then the following is a
conditional critical region with guard B
region x when B do S

» |f a process wants to enter a conditional critical region, it must
obtain the mutex lock; otherwise it is queued

= When the lock is acquired, the boolean expression B is tested.
If B evaluates to true, the process proceeds into the critical
region. Otherwise it releases the lock and is queued. Upon re-
acquisition of the lock, the process must retest B

13



Example: Protected objects

protected type Semaphore is
entry Down;
procedure Up;
function Get Count return Natural;
private Count: Natural := 0;
end Semaphore;

protected body Semaphore is
entry Down when Count > 0 is
begin
Count := Count - 1;
end Down;

procedure Up is
begin

Count := Count + 1;
end Up;

function Get Count return Natural is
begin
return Count;
end Count;
end Semaphore;

14



Ada: Discussion

= One of the first languages to introduce high-level concurrency
constructs into the language

» Both message-passing and shared-memory concepts

available: good to fit the approach to the problem at hand and
performance requirements

= Ada is still actively developed

15



The Actor model: Erlang



The Actor model
* A mathematical model of concurrent computation, introduced

by (Hewitt, 1973) and refined by (Agha, 1985) and others

= Actor metaphor: “active agent which plays a role on cue
according to a script”

= Process communication through asynchronous message
passing

= No shared state between actors

17



Actor

* An actor is an entity which in response to a message it
receives can

= send finitely many messages to other actors
= determine new behavior for messages it receives in the future
= create a finite set of new actors

» Communication via asynchronous message passing
» Recipients of messages are identified by addresses

» A message consists of

= the target to whom the communication is addressed
= the content of the message

18



Erlang

= Erlang: functional language, developed by Ericsson since
1986

= Erlang implements the Actor model

19



Erlang syntax for concurrency

= When processes (= actors) are created using spawn, they are
given unigque process identifiers (PIDs)

PID = spawn(Module, Function, Arguments)

» Messages are sent by passing tuples to a PID with the !
syntax

PID ! {message}

» Messages are retrieved from the mailbox using the receive
function with pattern matching

receive
Messagel -> Actionsl ;
Message2 -> Actions2 ;

end

20



Example: A simple counter

Interface

start() -»>

Counter

counter_loop(Val) ->

spawn(counter, counter_loop, [@0]). receive

increment(Counter) ->
Counter ! inc.

value(Counter) ->
Counter ! {self(), value},
receive
{Counter,Value} -> Value
end.

inc ->
counter_loop(Val + 1);
{From, value} ->
From ! {self(),Val},
counter_loop(Val);
Other ->
counter_loop(Val)
end.

21



Actors: Discussion

» |nfluential model for asynchronous message passing
= Also implemented in various other languages, e.g. Scala

= Success story: Ericsson AXD301 switch for telecommunication
systems with very high reliability — more than one million lines
of Erlang

22



Message Passing Interface (MPI)



Message Passing Interface (MPI)

= Message Passing Interface (MPI): APl specification for
process communication via messages, developed in 1993/94

= For parallel programs on distributed memory systems

24



“Hello, World!" in MPI

« Processes involved in an MP| execution are identified by
ranks, i.e. integer numbers @, 1, ..., numproc - 1

« In the following program, Process @ gets and prints messages
from all other processes

MPI Init(&argc,&argv); // Initialize MPI
MPI_Comm_rank(MPI_COMM_WORLD, &my rank); // My identifier
MPI_Comm_size(MPI_COMM_WORLD, &numproc); // Total number of processes
if (my_rank != 0) {
sprintf(message, "Greetings from process %d!”’, my_rank);
dest = 0;
MPI_Send(message, strlen(message)+l, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
} else {
for (source = 1; source < numproc; source++) {
MPI Recv(message, sizeof(message), MPI CHAR,
source, tag, MPI_COMM_WORLD, &status);
printf("%s\n", message);
}
}
MPI Finalize(); // Shut down MPI

25



SPMD in MPI

* As seen in the previous program, the most common paradigm
used in MPI is SPMD

= Within each process, we take branches based on its rank

= At startup, processes are mapped to processors by the MPI
runtime

26



MPI: Discussion

» Dominant model used in high-performance computing

= (Good portability: implemented for many distributed memory
architectures

= Available as library in many languages, in particular Fortran,
C, C++

27



Polyphonic C#

(Based on slides by C.A. Furia)



Polyphonic C#

= Polyphonic C# is an extension of C# with a few high-level
primitives for concurrency, appeared in 2004

= Based on the Join calculus (Fournet & Gonthier, 1996)
= Taken up by Microsoft’'s Cw project

= Joindava is a similar extension for Java

= Based on two basic notions

= Asynchronous methods
= Chords

(M. Mussorgsky, Pictures at an exhibition)

| |

s
»%ﬂ;;r S
“z‘}jﬁ‘ ‘{,,;a ﬂ—-fq'q.a




Asynchronous methods

= (Calls to asynchronous methods return immediately without
returning any result

= The callee is scheduled for execution in a different thread
= Similar to sending a message or raising an event
= Declared using async keyword (instead of void)

public async startComputation () {
// computation

}

= Aynchronous methods do not return any value

30



Chords: syntax

= A chord extends the notion of a method definition

= The signature of a chord is a collection of (traditional) method
declarations joined by &

= The body of a chord is all similar to the body of a traditional method

public String get() & public async put(String i) {
return i;

}

= Within a chord at most one method can be non-async
= Within a class the same method can appear in more than one chord

31



Chords: semantics

= A chord is only executed once all the methods in its signature
have been called

» (Calls are buffered until there is a matching chord

= the implicit buffer supports complex synchronization patterns with little code
(see Producers/Consumers later)

= |f multiple matches are possible, nondeterminism applies

= Execution returns a value to the only non-asynchronous method in
the chord (if any)

32



Chords semantics: example

public class Buffer() {
public String get() & public async put(String i) {
return i;

}

Buffer b = new Buffer();
b.put(“A”)
Console.WriteLine(b.get()); // prints “A”

b.put(“A”); b.put(“B”);
Console.WriteLine(b.get() + b.get()); // prints “AB”

b.get(); // blocks until some other thread calls put

33



Polyphonic C#: Discussion

= Combination of two ideas: asynchronous methods and chords

= Asynchronous methods also appear in earlier languages such
as Cilk

= (Chords: novel idea for message passing communication
among more than two threads

= Cw project is discontinued

34



Shared Memory Approaches



OpenMP

(Some slides adapted from Intel teaching material)



OpenMP

OpenMP (Open Multi-Processing) API for shared memory
multithreaded programming, appeared in 1997

OpenMP

Using preprocessor directives (pragmas) to mark parallel
code, may be ignored by other compilers

#pragma omp construct [clause [clause]..]

37



Programming model

= Fork-join parallelism
= Master thread spawns a team of threads as needed

= Parallelism is added incrementally: that is, the sequential program
evolves into a parallel program

/ \ // \\ V4 \
- e ~ - - ~ \ P - ~
4\~ . _ :,‘4\~ . — :f’ﬂ\~ . -— :>_
Master N
Thread

™~ 1 yd

Parallel Regions



Work sharing: data parallelism

= parallel construct forks additional ‘

threads v
= for and do constructs distribute #pragma omp parallel
loop iterations within the threads < 1 X
#pragma omp for
that encounter the construct | | |
i=1 i=>5 i=9
// assume N = 100000 l=2 1=6 i=1e
#pragma omp parallel i Z i ; : :i;
{
#pragma omp for | I |

{ Implicit barrier
for(i = 0, 1 < N, i++)

c[i] = a[i] + b[i];

39




Work sharing: task parallelism

= [he sections construct can be used
to compute tasks in parallel

#pragma omp parallel sections

{

#pragma omp section /* Optional */
a = taskA();

#pragma omp section
b = taskB();

#pragma omp section
c = taskC();

}

X
y

combine(a, b);
combine(x, c);

Serial Parallel
40



OpenMP clauses

» OpenMP constructs can be further refined by clauses

= private: make variables local to each thread (shared by
default)

= critical section: the enclosed block is executed by at
most one thread at a time

= schedule(type, chunk): define the type of scheduling used
for work sharing

» type static: divide work equally between threads (each gets chunk
iterations)

= type dynamic: threads may request more iterations when finished
(for load balancing)

* type guided: chunk size decreases exponentially, but won't be
smaller than chunk

41



OpenMP: Discussion

= Library approach, no language integration
= |mplemented for C, C++, Fortran, available on many platforms

= Supports incremental development of parallel programs,
starting with a sequential one

= Some support for load balancing

42



Coordination Languages: Linda



Linda

= Coordination languages are based on the assumption that a
concurrent programming language has two parts

= A computation language, in which single-threaded execution is
defined

= A coordination language, for creation of computations and process
communication

= The coordination features are based on the idea of a tuple
space, which holds data tuples that can be stored and
retrieved by the processes

= |Linda is the original coordination language, appeared around
1985

44



Tuple spaces

» Atuple space is a collection of tuples such as
{(“test”, 11, true), (“test”, 3, false), (“b”, 23), ... }

= Tuple spaces can be read and modified via the following
operations:

out(a,, ..., a,) writetuple

in(a;, ..., a,) readandremove matching tuple
read(a,, ..., a,) read matching tuple

eval(P) start a new process P

= Pattern matching for in and read

= (a;, ..., a,) cancontain both actual and formal parameters
= |f no matching tuple is found, the operation blocks

45



Example: Tuple spaces

= Assume we have the following tuple space:

{(“test”, 11, true), (“test”, 3, false), (“b”, 23) }

= Qperations

in(“a”, x) blocks, no matching tuple

in(“test”, x, b) removes tuple (“test”, 11, true) and binds 11
to x and true to b (could have also selected tuple (“test”, 3, false))

read(“test”, x, b) reads tuple (“test”, 3, false)
out(“a”, 14) puts (“a”, 14) into the tuple space

The last action unblocks in(“a”, x), which will remove the inserted
tuple

46



Simulating semaphores in Linda

= Semaphores can be implemented in Linda
= |nitilization: tuple space with k tuples (“token”)
» |mplement down with in(“token”)
* |Implement up with out (“token”)

= Solution to the mutual exclusion problem:

while true do
in(“token”)
critical section
out (“token”)
non-critical section
end

47



Linda: Discussion

= Communicating processes in Linda are only loosely coupled,
processes need not know about other processes

* The coordination language is completely orthogonal to
computation

= Distribution of processes is easy
= Potentially processes written in different languages can cooperate

* |mplementations of Linda can be found in several languages
such as Java (JavaSpaces) and C

48



Cilk



Cilk

= (Cilk is a language extension to C/C++, appeared in 1994

» For shared-memory multiprocessing

50



Cilk keywords

= Cilk extends C/C++ with only few keywords:
» cilk: the routine may be spawned off in parallel
* spawn: the routine may execute in parallel with the parent caller
= sync: wait until all child threads have returned

cilk int fib (int n)

{

if (n < 2) return n;
else
{
int x, y;
X = spawn fib (n-1);
y = fib (n-2);
sync;
return (x+y);

51



Work stealing

» Each processor maintains a queue of threads that are ready
to execute

= [f the queue of a processor is empty, the processor may steal
threads from a random processor’'s queue

52



Cilk: Discussion

= Programmer indicates what can be executed in parallel

= The runtime environment decides how the work is divided
among processors

= Hence it is automatic to map Cilk programs to new
architectures

= When removing all Cilk keywords from a Cilk program, the
result is a valid serial C program

= Cilk is commercially implemented and distributed by Intel

53



X10



Partitioned global address spaces (PGAS)

= Each processor has its own local memory, but the address

space is unified

* This allows processes on other processors to access remote
data via simple assignment or dereference operations

Partitioned global memory

M

Ma

M;

!

!

Processor,

Processor,

55

!

Processor,




X10

= Object-oriented language based on the PGAS model,
appeared in 2004, developed by IBM

» New threads can be spawned asynchronously: Asynchronous
PGAS model

= A memory partition and the threads operating on it are called
a place

56



X10 operations (1)

= async S

= Asynchronously spawns a new child thread executing S and returns
immediately

= finish S
» Executes S and waits until all asynchronously spawned child threads
have terminated

def fib(n: int): int {

if (n < 2) return 1;

val nl: int;

val n2: int;

finish {
async nl = fib(n - 1);
n2 = fib(n - 2);

}

return nl + n2;

57



X10 operations (2)

= when (E) S
= Conditional critical region: suspends the thread until E is true, then
executes S atomically

= E must be nonblocking, sequential, only access local data, and be
side-effect free

when (!buffer.full) {
buffer.insert(item);

}

58



X10 operations (3)

= at (p) S
= Executes S at place p
= Blocks current thread until completion of S

class C {

var x: int;

def this(n: int) { x = n; }
}

def increment(c: GlobalRef[C]) {
at (c.home) c().x++;

}

59



X10: Discussion

» Developed as part of the High Productivity Computing
Systems initiative of the US Department of Defense: novel
languages for supercomputing

= Very similar (in the same project)
= Chapel, developed by Cray
= Fortress (Fortran-based)

= More traditional PGAS languages
= UPC (Unified Parallel C)
= Co-array Fortran
= Titanium (Java extension)

60



Conclusion

= Developers have a wide choice of languages for concurrency
and parallelism

» |Important to know which languages target which applications

= Many are based on very innovative language concepts
= Adoption can be low because of the learning curve

= No dominant innovative language for concurrency yet
= |nteresting field for research

61



