Bita: Coverage-Guided, Automatic Testing of Actor Programs

Samira Tasharofi, Michael Pradel, Yu Lin, and Ralph Johnson

Vytautas Astrauskas

ETH Zürich, CCC Seminar

01.04.2015 1 / 17

Background

- 2 Implementation
- 3 Evaluation
- 4 Conclusions

Vytautas Astrauskas

ETH Zürich, CCC Seminar

▲ ■ ▶ ■ つへの 01.04.2015 2 / 17

Background

- 2 Implementation
- 3 Evaluation
- 4 Conclusions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Testing Concurrent Programs

- Potentially a large number of different interleavings of operations.
- Test may succeed with some interleavings and fail with others.
- Requirements:
 - Test different interleavings.
 - Testing should not take too long.

< 3 > < 3 >

Actors (in Akka)

- Program is a set of actors.
- Actor entity with its own local state and thread of control that communicate exclusively by exchanging messages.
 - A mail box for incoming messages.
 - A message handler, which can *change at runtime*.
 - Message processing is *atomic*.
- **Execution schedule** order in which actors receive messages.

1 Background

2 Implementation

3 Evaluation

4 Conclusions

Vytautas Astrauskas

Overview

- **1** Select coverage criterion.
- 2 Obtain initial schedule by running the program with default scheduler.
- **3** Generate interesting schedules by reordering initial schedule.
 - "Interesting" = increases coverage.
 - Goal: only feasible schedules.
 - Goal: minimize the amount of schedules generated.
- 4 Run program with generated schedules.

▶ < ∃ ▶ < ∃ ▶</p>

Coverage Criteria

- A pair of receive events for the *same* receiver.
 - 1 Pair of Consecutive Receives (PCR).
 - 2 Pair of Receives (PR).
 - 3 Pair of Message Handler Change and Receive (PMR).
- For the specific coverage criterion a set of schedules covers a pair of receive events if and only if there exists schedules that cover both orderings.

< 3 > < 3 >

Must-Happen-Before Constraints

- 1 Causality Constraints one event caused another.
- Sender-Receiver Constraints messages between two actors are delivered in order.
- **3** Ordering Constraints synchronous communication.

< 3 > < 3 >

Schedule Generation Algorithm (Simplified)

1:	function Schedul	E(prefix, tail, cr)		
2:	for all $r_i, r_j \in ta$	$il \wedge r_i$ before r_j do		
3:	if isCrRelate	$d(r_i, r_j, cr) \land (r_i, r_j) \not\in m$	nustHB then	
4:	if $r_i \rightarrow_{cr}$	$r_j \notin OrderingGoals$ the	n	
5:	newP	$Prefix \leftarrow prefix + before($	$(r_i) + mustHB(r_j) + r_i -$	⊦ r _j
6:	newT	$ail \leftarrow \dots$		
7:	Ordei	$ringGoals \leftarrow OrderingGoals$	$pals \cup \{r_i \to_{cr} r_j\}$	
8:	retur	n Schedule(<i>newPrefix</i>	r, newTail, cr)	
9:	end if			
10:	if $r_j \rightarrow_{cr}$	$r_i \notin OrderingGoals$ the	n	
11:	end if			
12:	end if			
13:	end for			
14:	return prefix			
15:	end function			
			(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	
	Vytautas Astrauskas	ETH Zürich, CCC Seminar	01.04.2015	10 / 17

1 Background

- 2 Implementation
- 3 Evaluation
- 4 Conclusions

Vytautas Astrauskas

ETH Zürich, CCC Seminar

↓
≥

</th

Bug Detection

	Issue	Bita		Random Scheduler		Default Scheduler		
Bug					$d_{max}=300$ ms			
e		Tried Criteria	Time	Schedule	Time	Execs	Time	Execs
Ga1(U)	1019	PR	36±1	1	ТО	191	ТО	265
Ga2(U)	1018	PR	37 ± 1	1	163 ± 75	8 ± 4	ТО	269
Ga3(U)	1018	PR	26 ± 1	1	100 ± 40	6 ± 2	TO	270
Ga4(U)	1116	PR	25 ± 1	1	326 ± 98	18 ± 5	ТО	270
SC1(U)	80	PR	102 ± 15	2 ± 1	TO	158	TO	182
SC2(U)	81	PR	86 ± 32	2 ± 1	ТО	104	ТО	219
SC3(K)	58	PR	176 ± 29	3 ± 1	ТО	90	ТО	257
FR11(U)	13	PR	43 ± 6	1	TO	206	ТО	225
FR12(K)	12	PR	36 ± 1	1	TO	471	ТО	594
Ba(U)		PR,PMR	250 ± 43	28 ± 5	TO	263	ТО	532
Ms(K)		PR	14	1	TO	703	TO	1788
PR(K)		PR,PCR	$263 {\pm} 151$	32 ± 21	TO	235	$2,268{\pm}782$	557 ± 180
		Summary of	all buge wi	th ton ron	atitions nor l	bua:		
		Summary of	all bugs wi	-	-	bugs—Avg. time	to detect a bug	g—Slowdown
10,939—120—91— 1 x 335,903—30—11,196— 122 x 419,020—7—								9,860 —656x

Table II. Times are in seconds. "TO" - timeout (1 hour).

Vytautas Astrauskas

Criteria Comparison

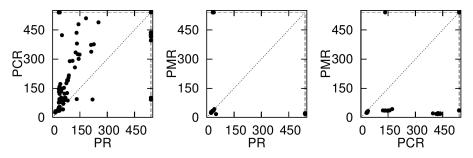


Fig. 3. Pairwise comparison of time (in seconds) needed to detect a bug with specific criterion.

ETH Zürich, CCC Seminar

01.04.2015 13 / 17

Coverage

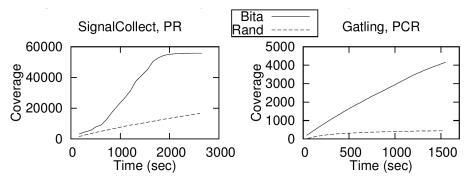


Fig. 4. Comparison of coverage achieved by Bita and random scheduling with $d_{max} = 300 ms$.

Vytautas Astrauskas

ETH Zürich, CCC Seminar

01.04.2015 14 / 17

1 Background

- 2 Implementation
- 3 Evaluation
- 4 Conclusions

Conclusions

Advantages:

- Bita is much faster in finding bugs than alternatives.
- Schedules that reveal bugs are logged.
- Limitations:
 - Schedules are generated based on the single run data.
 - Conservative must-happen-before constraints.
- Impact:
 - Paper is cited in 3 papers, but only in related or future work sections.
- Unclear points:
 - What setup (hardware, OS, JVM) was used for experiments?
 - Is final test execution parallel?

• • = • • = •

Conclusions

Thank You!

Questions?

Vytautas Astrauskas

ETH Zürich, CCC Seminar

●
■
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト