Predicting Null-Pointer Dereferences in
Concurrent Programs

Azadeh Farzan
Parthasarathy Madhusudan
Niloofar Razavi

Francesco Sorrentino

Overview

* The problem

The idea

e The solution

The evaluation

The problem

e Virtual memory segments can be assigned , at will” by the operating system.

* However, in many (in the case of C, arguably most) cases, the value that’s
assigned to a pointer is not meant to be used as an offset to a memory location
— usually it’s assigned there by mistake.

e To prevent invalid values being pulled from there, the OS prevents mapping the
first (few) page(s) of the virtual memory space to physical memory address

space.

* The MMU, via hardware traps, causes the OS to signal a software failure in case
of an errorneous dereference.

 Most common conseqguence is having the process killed by the OS with a
SIGSEGV signal (in case of POSIX systems).

But Java?

* No direct memory manipulation involved (viva la maquina virtual)...
e ...butthe null value still has its uses:
» Default reference-type pointer or pointer initialization in general; for
example, we might want to keep said pointer in a clearly invalid state if it’s
yet to be assigned a valid object;

» Signalling lack of further (valid) use for the object;

* To speed up the GC taking care of the object by removing references
(although it’s non-deterministic and in general considered bad practice).

But Java?

* The problem is most prominent in the case of multi-threaded applications. A
very simple example: a FIFO queue without an appropriate locking mechanism.
* Adifferent example from the paper:

T: T
public void returnObject(Object obj){ public void close(){ bs
. by Synchronized (this) {
{:if (isClosed) -
throw new PoolClosedEx(); modCount = ...
.. ’ | b -
Synchronized (this) { pool = null;
numActive——; /" isClosed = true;

¥

. = modCount;

¢' - pool.push(obj);]

}
}

The idea

e Can’t quite avoid using null values in many cases;

* While Java offers a mechanism for graceful handling of null pointer
dereferences (the NullPointerExceptions), performing manual checks is
tedious and error-prone.

* What about the techniques for testing concurrent applications we already
know?
* Alot of them revolve around rescheduling operations done by different
threads and simulating such runs in order to discover troublesome
operation interleavings.

The idea

* What about the techniques for testing concurrent applications we already
know?
* Alot of them revolve around rescheduling operations done by different
threads and simulating such runs in order to discover troublesome
operation interleavings.

* The goal would be to find such thread interleavings for which a write of
null to a variable would be immediately (with regards to operations done

on that variable) followed by a read, causing a null to be dereferenced.

e Just permutating through possible interleavings won’t do - we still need to
account for scalability and reliability of the solution.

The solution

oo oooooos

———

Authors proposed the following framework for solving the problem of
simulating runs causing a null pointer dereference:

Monitor

Monitor
Instrumenter

1

Instrumented
classes

JVM

U

o

Observed
Run

4
Constraints

Run Predictor

Z3

v No Solution

Constraint Generator

v

null- WR pair

oo ooooooooooooooooooooooooooooooooooooDD
i)

i

Predicted 1

Runs

Scheduler

e e e

Run Run
Extractor
L.])
Prefix
Segment Segment
Generator
) r
null-WR
pair

Extractor

N N N ey ey e N ey Sy e Oy YN

.

Jli Schedule
*1 | Instrumenter
D
Instrumented

classes

JVM

ocofoooooooooT

Qﬁ-ﬁ-m-ﬁ-cﬁ

D
0
E
b
i /
|
U
0
0

Bug

Passed the
Test Harness

The solution

Observed
Run

ocoooooooooooooDoooooooooooDooooooooooDooooooD

Run Predictor

. . .
Constraints ' No Solution

Constraint Generator

v

null- WR pair

IH Predicted

Runs

Run Run
Extractor
.
j .
Prefix
p
Segment Segment
Generator
- -
null-WR
pair

Extractor

L=====================

=

The main entity the process
revolves around is a null-WR pair.
It’s a pair a = (e, f), where e
denotes an operation of
assigning a null value to a
reference and f denotes a read
operation on that reference.

The goal is to extract those pairs
from a reference run and search
for interleavings that will cause a
NullPointerException to be
raised.

The solution

Ohserved null-WR
ton | null-WR pair] pair
Extractor J

* First, using static analysis, all null-WR pairs are detected;

* Then, for each of them, a lock validity test is performed to check if the pair is
feasible in regards to locking semantics.

* All pairs that are left are then transferred to the segment generator.

The solution

null-WR
pair

.
Segment

Observed Run

(Generator

-

L%

Segment

-
Prehx

-

* Every pair is analyzed in relation to the reference run in order to shorten the run
to a segment including only relevant operations, i.e. those pertaining to the
variable under test and to any locks that could potentially be used when the

variable is used.

* The resulting segments are then passed to the SMT solver, while their prefixes left
after prunning are passed to the run generator which will concatenate predicted
feasible interleavings to it and pass it to the virtual machine for testing.

The solution

h=POANCV ADV ALV -"]

Run
PO = (A?:] POl) A Clm’t E:j

Cinie = Nz (Fcinee < tse,) J

i—1
PO‘E = /\;“:1 (fsal.] < tscl.(j+l))

DV = /\1 /\aruie Val(z) /\-rEer,.ng (Vw'e‘ﬁ-‘}‘,‘ai Coupk'dr*w{) {:‘Dnﬁtr;ﬂj ntﬁT l Ni} S ﬁ}l]lti I::'I-I-

Coupled, ,, = (tsw <ts;) A [\ ((tser <tsw)V (tsy < tser))
e"eW,—{w}

i

LV =LVi ALV,

Segment

Wie A A A (fsea<ts v b, <ts.) Constraint Generator|<

i#je{l,..,n }lock | [eqc.eretlely i
[eheeratlEL5

LV, = /\ /\ /\ (tsﬂ'm; < tseu)

i#je{l,..,n} lock | eaceNoRel; |
(eheser el €L

* The segments are then analyzed in order to prepare a set of logical constraints in
accordance to the maximal causal model, capturing sequential consistency, lock-,
data- and thread creation validity.

* Such set of constraints is then passed to the Z3 SMT logical solver, which either
passes the solution it found as series of event timestamps to the run generator or
reports that no solution has been found; in such a case, data-validity constraints
are iteratively relaxed until a solution is found.

The solution

Predicted
Runs

i
Run Run ‘

Extractor J "

T Prefix

* Predicted runs pertaining to the maximal causal model are then concatenated to
the prefix taken from the segment generator and passed to the virtual machine’s

scheduler for testing.

* The framework also included a data-race detection unit which was not described
in detail in the paper.

The evaluation

Monitoring Prediction || Scheduling |
5 BN
21 8|25 5|8 |9.(2% 2 3
2| B|¥|3%| E|x |[35|LE 25 g .
E| E|S|EE| 2||E |E2 (=& 22| EX g€ 132 g
Sl |2|S2] 2| |S3|E%)| <S8 53 E|225|5528
- S1Selels2] 2|S.,.|%8|22 83| 22 EIlE_S |22 8
- 2 | 2||5|52|5|5E| E|E5|EB|25|| Es3| 2% EN R
Application = ZIZ|ZE|Z2|Z22| E|22 |2£ |22 23L& 2 £ S|lzaE|<Z2A&
(LOC)
Elevator Data | 7.3s|| 3| 116 8| 14K| 7.4s 0 - - 1.9s 0
(566) Data2 | 7.3s|| 5| 168| 8| 30K| 7.4s 0 - - 8.9s 0
Data3 | 19.2s || 5| 723| 50| 150K | 19.0s 0 - - 58.5s 0
RayTracer A-10 | 5.0si{ 10 106]| 10| 648| 5.0s 9 9 5.6s 50.5s 0
(1.5K) A-20 | 3.6/ 20| 196| 20| L7K| 4.4s 19 19 6.7s 2m15s 0
- B-10 |424s || 10| 106| 10| 648 |42.5s 9 9 42.7s 6m24s 0
PT1 | <Is|| 4| 28] 1 08| «<Is 3 2 1 <ls 1.6s 2 0
Pool 1.2 PT2 | <lIs|| 4| 29| 1| 267| <Is 3 0 0 - 8.8s 0 0
(5.8K) PT3 | <lIs|| 4| 20| 3| 180| <ls 26 0 23 1.2s 27.0s 0 3
PT4 | <lIs|| 4| 24| 3| 360| <lIs 32 20 21 2.5s 57.8s 0 1
PTI | <Is|| 4] 30| 1] 100| <Is 3 0 3 <ls 2.6s 0 0
Pool 1.3 PT2 | <lIs|| 4| 31| 1| 271| <l1s 3 0 0 - 9.8s 0 0
(TK) PT3 | <lIs|| 4| 20| 3| 204| <lIs 35 0| 30 1.4s 42.9s 0 0
PT4 | <lIs|| 4| 23| 3| 422| <Is 62 1 48 2.2s 1m49s 0 1
PTI | <Is|| 4] 33| 2] 124 <Is 2 0 1 1.5s 1.3s 0 0
Pool 1.5 PT2 | <lIs|| 4| 34| 2| 306| <Is 5 0 1 10.5s 10.5s 0 0
(7.2K) PT3 | <lIs|| 4 15| 2| 108| <ls 3 0 0 - 4.1s 0 0
PT4 | <lIs|| 4 18] 2| 242| <ls 18 1 7 34s 27.4s 0 1
SBucketMap SMT | <Is|] 4] 123]19] 892] <Is 2 2 - <ls 1.3s 1 0
(750)

The evaluation

Monitoring Prediction || Scheduling |
5 BN
2l 8|.|E5| 5|8 |3.|8% 8 2
5| Z|4|5=| | |25|2E 2 g 8
=l 53122 £ 3 2 =3 2zl Ex SE _ |58 .
SleS|2 |25 2| |E2|EL| <25 5% E|225|5528
s | oolcl2Ble|eg| 2|eelc2 22| 2R £2 £S5 |85 8
2 2 § 3|5 5| £||EE|EB|E¢s g o S IZ53|E2552
aiicaion | £ | Z|Z|22|2 (22| £|2E |28 (22| Z23E| 22 E|Z32|22532
(LOC)
VTT | <Is|[4] 44 2] 370 <Is|[[21| 11| 10 21 <Is 43s] 2 0
Vector VT2 | <1s|| 4 34| 2| 536| <ls 31 21 10 31 1.1s 33.0s 1 0
(1.3K) VT3 | <lIs|| 4 34| 2| 443 <ls 32 22 10 32 <ls 22.1s 1 0
’ VT4 | <1s|| 4 201 2| 517| <«<l1s 30 0 30 30 2s 59.4s 0 1*
VTS5 | <lIs|| 4| 29| 2| 505| <Is 85 1 84 82 2s 2m57s 0 1"
ST1 | <Isf| 4 200 2] 205] <l1s 11 6 5 11 <ls 3.5s 2 0
St ack ST2 | <lIs|| 4 24 2| 251| <l1s 16 11 5 15 <ls 10.9s 1 0
(1.4K) ST3 | <lIs|| 4 241 2| 248 <ls 17 12 5 17 <ls 10.3s 1 0
: ST4 | <lIs|| 4| 29| 2| 515| <lIs 30 0 30 30 1.8s 53.2s 0 1*
ST5 | <lIs|| 4 2001 2| 509| <l1s 85 1 84 83 2.0s 2m51s 0 1*
HashSet HTI | <Is|| 4] 76| 1| 432] <Is 7 7 - T <Is 32s | 0
(1.3K) HT2 | <lIs|| 4 541 1] 295] <l1s 0 - - - - <1s 0 0
StringBuffer || SBT | <ls|| 3 16 3 80| «Is 2 2 2 <lIs 1.3s 1™ 0
(L4K)
Apache
FtpServer LGN |Im2s|| 4| 112| 4| 582| 60s|| 1l6| 78| 32 65 || Im13s | 2h14m4é6s 9 3
(22K)
Hedc Std L7s|| 7| 110 6| 602]|1.74s 18 9 1 10{| 11.7s 1m57s 1 0
(30K)
Weblech
v.0.0.3 Std | 49s|| 3| 153| 3| 1.6K|4.92s 55 10| 29 30|/ 16.26s| 10m34s 1 19

(35K)
. Total Number of Errors 27 14 I

The evaluation

* The prediction and scheduling time is fairly reasonable, considering the use of a
sophisticated logic solver.

* The results of benchmarks turned out to be very good: about 40 exceptions with
null-pointer dereferences and 60 data races, which ,is the most successful attempt
at finding errors on these benchmarks in the literature”.

e All errors were also found to be deterministically reproducible using the scheduler.

Thank you for your attention.

Any questions?

