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The problem

e Virtual memory segments can be assigned , at will” by the operating system.

* However, in many (in the case of C, arguably most) cases, the value that’s
assigned to a pointer is not meant to be used as an offset to a memory location
— usually it’s assigned there by mistake.

e To prevent invalid values being pulled from there, the OS prevents mapping the
first (few) page(s) of the virtual memory space to physical memory address

space.

* The MMU, via hardware traps, causes the OS to signal a software failure in case
of an errorneous dereference.

 Most common conseqguence is having the process killed by the OS with a
SIGSEGV signal (in case of POSIX systems).



But Java?

* No direct memory manipulation involved (viva la maquina virtual)...
e ...butthe null value still has its uses:
» Default reference-type pointer or pointer initialization in general; for
example, we might want to keep said pointer in a clearly invalid state if it’s
yet to be assigned a valid object;

» Signalling lack of further (valid) use for the object;

* To speed up the GC taking care of the object by removing references
(although it’s non-deterministic and in general considered bad practice).



But Java?

* The problem is most prominent in the case of multi-threaded applications. A
very simple example: a FIFO queue without an appropriate locking mechanism.
* Adifferent example from the paper:

T: T
public void returnObject(Object obj){ public void close(){ bs
. by Synchronized (this) {
{:if (isClosed) -
throw new PoolClosedEx(); modCount = ...
.. ’ | b -
Synchronized (this) { pool = null;
numActive——; /" isClosed = true;

¥

. = modCount;

¢' - pool.push(obj); ]

}
}




The idea

e Can’t quite avoid using null values in many cases;

* While Java offers a mechanism for graceful handling of null pointer
dereferences (the NullPointerExceptions), performing manual checks is
tedious and error-prone.

* What about the techniques for testing concurrent applications we already
know?
* Alot of them revolve around rescheduling operations done by different
threads and simulating such runs in order to discover troublesome
operation interleavings.



The idea

* What about the techniques for testing concurrent applications we already
know?
* Alot of them revolve around rescheduling operations done by different
threads and simulating such runs in order to discover troublesome
operation interleavings.

* The goal would be to find such thread interleavings for which a write of
null to a variable would be immediately (with regards to operations done

on that variable) followed by a read, causing a null to be dereferenced.

e Just permutating through possible interleavings won’t do - we still need to
account for scalability and reliability of the solution.



The solution
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Authors proposed the following framework for solving the problem of
simulating runs causing a null pointer dereference:
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The solution
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The main entity the process
revolves around is a null-WR pair.
It’s a pair a = (e, f), where e
denotes an operation of
assigning a null value to a
reference and f denotes a read
operation on that reference.

The goal is to extract those pairs
from a reference run and search
for interleavings that will cause a
NullPointerException to be
raised.



The solution
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* First, using static analysis, all null-WR pairs are detected;

* Then, for each of them, a lock validity test is performed to check if the pair is
feasible in regards to locking semantics.

* All pairs that are left are then transferred to the segment generator.



The solution
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* Every pair is analyzed in relation to the reference run in order to shorten the run
to a segment including only relevant operations, i.e. those pertaining to the
variable under test and to any locks that could potentially be used when the

variable is used.

* The resulting segments are then passed to the SMT solver, while their prefixes left
after prunning are passed to the run generator which will concatenate predicted
feasible interleavings to it and pass it to the virtual machine for testing.



The solution
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* The segments are then analyzed in order to prepare a set of logical constraints in
accordance to the maximal causal model, capturing sequential consistency, lock-,
data- and thread creation validity.

* Such set of constraints is then passed to the Z3 SMT logical solver, which either
passes the solution it found as series of event timestamps to the run generator or
reports that no solution has been found; in such a case, data-validity constraints
are iteratively relaxed until a solution is found.



The solution
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* Predicted runs pertaining to the maximal causal model are then concatenated to
the prefix taken from the segment generator and passed to the virtual machine’s

scheduler for testing.

* The framework also included a data-race detection unit which was not described
in detail in the paper.



The evaluation
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The evaluation

* The prediction and scheduling time is fairly reasonable, considering the use of a
sophisticated logic solver.

* The results of benchmarks turned out to be very good: about 40 exceptions with
null-pointer dereferences and 60 data races, which ,is the most successful attempt
at finding errors on these benchmarks in the literature”.

e All errors were also found to be deterministically reproducible using the scheduler.




Thank you for your attention.

Any questions?




