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Concurrent DbC Goal

Java
source code

Java
compiler

Java
byte code

JVM

Java + JML
source code

JML
compiler

Instrumented
Java byte code

Design by Contract in a nutshell
Theory: correct program + DbC ⇐⇒ correct program
Run-time:

Sequential: regular ≡ instrumented
Concurrent: execution time affects execution paths

How to restore equivalence?
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Concurrent DbC Challenges

• Interference

Objects involved in contracts may be changed before/after or
during execution of a method

• Locking-related properties

Deadlocks

• Specification of thread-safety properties in presence of
inheritance

Thread-safety predicates may become meaningless in
descendants
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Interference Sequential JML

Method
source code

JML

Java

Byte code

Precondition

Body

Postcondition

Instrumented
byte code

call precondition

call body

call postcondition

time

Precondition

Body

Evaluation Postcondition
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Interference Example: Linked queue

/* @ public normal_behavior

3 @ ensures \result <==> head.next == null */

public boolean isEmpty () {

1 synchronized (head) {

// @ ensures_safepoint:

2 return head.next == null;
}}

... ... ”make list empty” head.next == null
T1 1’ lock (head) [head]

T1 2 result =

(head.next == null)
[head],
result == true

T1 1” unlock (head) result == true

T2 ... insert (v) head.next != null

T1 3 result <==>

head.next == null
Postcondition
violation!
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Interference Example: Linked queue

/* @ public normal_behavior

3 @ ensures \result <==> head.next == null */

public boolean isEmpty () {

1 synchronized (head) {

// @ ensures_safepoint:
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}}

... ... ”make list empty” head.next == null
T1 1’ lock (head) [head]

T1 2 result =

(head.next == null)
[head],
result == true

T1 3 result <==>

head.next == null
[head],
Postcondition OK

T1 1” unlock (head) result == true
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Interference Concurrent JML

Sequential translation

time

Precondition sync

Body

Evaluation sync Postcondition

Concurrent translation
time

sync Precondition Evaluation Postcondition sync
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Interference Other mechanisms

Mechanism Specification Implementation
Safepoints requires

ensures

requires safepoint

ensures safepoint

Wait
condition

when commit

Thread
safety

requires thread safe

ensures thread safe
—

Scope

• Safepoints: internal state

• Thread safety: external state

Thread safety + Safepoints = No Interference
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Deadlock avoidance Lock order specification

Syntax
lock order lock1 < lock2
lock order lock1 <= lock2

Semantics
Acquisition order < <=

lock1 before lock2 true true
lock1 only true true
lock2 before lock1 false false
lock2 only false false
neither lock1 not lock2 false true

Monitoring
At every lock acquisition point
Before actually attempting to acquire a lock (to
prevent deadlocks)
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Equivalence assessment Run-time overhead

• Setup: Router driver of Juniper’s E-series routers, 520 000
active subscribers, 1 500 transactions per second

• 54 classes
• 33 509 LOC
• 34% concurrent behavior

• Measurement

Heap consumption: 3.47 CPU load: 17.5

Original

Intrumented

Performance ratio between production and instrumented
versions is constant.
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Equivalence assessment Indistiguishability
Analysis of behavior:

• Standard test suite
• 2 hours, no contract violations

• Faults introduced from Juniper’s defect database
• Instrumentation to print errors instead of assertion violations
• Reproduced all 139 functional and concurrent faults

• Influence of instrumentation on thread interleavings
• No additional locks

• Safepoint evaluation (inside synchronized)
• Commit points for wait conditions (inside synchronized)
• Locking predicates (use thread-local objects in pre- and

post-states)

• Limited locking
• ConcurrentHashMap optimized for concurrent access
• Writes only in pre- and post-states of methods with

requries /ensures thread safety

• Reads rarely acquire locks
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Beyond the paper Comparison to SCOOP

Property Concurrent JML SCOOP
Syntax > 10 keywords separate

Internal state Safepoints No data races

External state Thread-safety Controlled arguments

Wait conditions Explicit Separate calls in
preconditions

Synchronization Explicit locking Controlled arguments

Deadlock
avoidance

Lock order Partial: controlled
arguments
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Beyond the paper Open questions

For further discussion

• What is allowed between method entry and
requires safe point?

• Blocks concurrent behavior are combined using
conjunction. What about modularity?

• What feature of concurrent JML would be nice to have in
SCOOP?

• What can be improved or simplified in concurrent JML?

• Does lock order specification prevent from deadlocks?
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