
Enabling the Runtime Assertion Checking
of Concurrent Contracts

for the Java Modeling Language
by Wladimir Araujo, Lionel C. Briand, Yvan Labiche

CCC Seminar Talk

Alexander Kogtenkov

ETH Zürich

April 15, 2015



Bibliography Cited by

[1] W. Araujo, L.C. Briand, and Y. Labiche. “On the Effectiveness of Contracts as Test

Oracles in the Detection and Diagnosis of Race Conditions and Deadlocks in Concurrent

Object-Oriented Software”. In: ESEM 2011. Sept. 2011, pp. 10–19.

[2] W. Araujo, L.C. Briand, and Y. Labiche. “On the Effectiveness of Contracts as Test

Oracles in the Detection and Diagnosis of Functional Faults in Concurrent Object-Oriented

Software”. In: Software Engineering, IEEE Transactions on 40.10 (Oct. 2014),

pp. 971–992.

[3] E.T. Barr et al. “The Oracle Problem in Software Testing: A Survey”. In: Software

Engineering, IEEE Transactions on PP.99 (2014), pp. 1–30.

[4] Antonio Carzaniga et al. “Cross-checking Oracles from Intrinsic Software Redundancy”. In:

ICSE 2014. Hyderabad, India: ACM, 2014, pp. 931–942.

[5] Mark Harman et al. A Comprehensive Survey of Trends in Oracles for Software Testing.

Tech. rep. CS-13-01. University of Sheffield, Department of Computer Science, 2013.

[6] A. Jyoti and V. Arora. “Debugging and visualization techniques for multithreaded

programs: A survey”. In: ICRAIE, 2014. May 2014, pp. 1–6.

[7] Jorne Kandziora. Runtime assertion checking of multithreaded Java programs - An

extension of the STROBE framework. Aug. 2014.

[8] Mauro Pezzè and Cheng Zhang. “Chapter One - Automated Test Oracles: A Survey”. In:

ed. by Atif Memon. Vol. 95. Advances in Computers. Elsevier, 2014, pp. 1–48.

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 2 / 14



Bibliography Paper details

W. Araujo, L.C. Briand, and Y. Labiche. “Enabling the
runtime assertion checking of concurrent contracts for the
Java modeling language”. In: Software Engineering (ICSE),
2011 33rd International Conference on. May 2011,
pp. 786–795. doi: 10.1145/1985793.1985903.

Wladimir Araujo
Juniper Networks

Lionel C. Briand
Simula Research Laboratory and University of Oslo

Yvan Labiche
Carleton University

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 3 / 14

http://dx.doi.org/10.1145/1985793.1985903


Concurrent DbC Goal

Java
source code

Java
compiler

Java
byte code

JVM

Java + JML
source code

JML
compiler

Instrumented
Java byte code

Design by Contract in a nutshell
Theory: correct program + DbC ⇐⇒ correct program
Run-time:

Sequential: regular ≡ instrumented
Concurrent: execution time affects execution paths

How to restore equivalence?

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 4 / 14



Concurrent DbC Challenges

• Interference

Objects involved in contracts may be changed before/after or
during execution of a method

• Locking-related properties

Deadlocks

• Specification of thread-safety properties in presence of
inheritance

Thread-safety predicates may become meaningless in
descendants

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 5 / 14



Interference Sequential JML

Method
source code

JML

Java

Byte code

Precondition

Body

Postcondition

Instrumented
byte code

call precondition

call body

call postcondition

time

Precondition

Body

Evaluation Postcondition

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 6 / 14



Interference Example: Linked queue

/* @ public normal_behavior

3 @ ensures \result <==> head.next == null */

public boolean isEmpty () {

1 synchronized (head) {

// @ ensures_safepoint:

2 return head.next == null;
}}

... ... ”make list empty” head.next == null
T1 1’ lock (head) [head]

T1 2 result =

(head.next == null)
[head],
result == true

T1 1” unlock (head) result == true

T2 ... insert (v) head.next != null

T1 3 result <==>

head.next == null
Postcondition
violation!

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 7 / 14



Interference Example: Linked queue

/* @ public normal_behavior

3 @ ensures \result <==> head.next == null */

public boolean isEmpty () {

1 synchronized (head) {

// @ ensures_safepoint:

2 return head.next == null;
}}

... ... ”make list empty” head.next == null
T1 1’ lock (head) [head]

T1 2 result =

(head.next == null)
[head],
result == true

T1 1” unlock (head) result == true

T2 ... insert (v)

head.next != null

T1 3 result <==>

head.next == null

Postcondition
violation!

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 7 / 14



Interference Example: Linked queue

/* @ public normal_behavior

3 @ ensures \result <==> head.next == null */

public boolean isEmpty () {

1 synchronized (head) {

// @ ensures_safepoint:

2 return head.next == null;
}}

... ... ”make list empty” head.next == null
T1 1’ lock (head) [head]

T1 2 result =

(head.next == null)
[head],
result == true

T1 3 result <==>

head.next == null
[head],
Postcondition OK

T1 1” unlock (head) result == true

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 7 / 14



Interference Concurrent JML

Sequential translation

time

Precondition sync

Body

Evaluation sync Postcondition

Concurrent translation
time

sync Precondition Evaluation Postcondition sync

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 8 / 14



Interference Other mechanisms

Mechanism Specification Implementation
Safepoints requires

ensures

requires safepoint

ensures safepoint

Wait
condition

when commit

Thread
safety

requires thread safe

ensures thread safe
—

Scope

• Safepoints: internal state

• Thread safety: external state

Thread safety + Safepoints = No Interference

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 9 / 14



Interference Other mechanisms

Mechanism Specification Implementation
Safepoints requires

ensures

requires safepoint

ensures safepoint

Wait
condition

when commit

Thread
safety

requires thread safe

ensures thread safe
—

Scope

• Safepoints: internal state

• Thread safety: external state

Thread safety + Safepoints = No Interference

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 9 / 14



Deadlock avoidance Lock order specification

Syntax
lock order lock1 < lock2
lock order lock1 <= lock2

Semantics
Acquisition order < <=

lock1 before lock2 true true
lock1 only true true
lock2 before lock1 false false
lock2 only false false
neither lock1 not lock2 false true

Monitoring
At every lock acquisition point
Before actually attempting to acquire a lock (to
prevent deadlocks)

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 10 / 14



Equivalence assessment Run-time overhead

• Setup: Router driver of Juniper’s E-series routers, 520 000
active subscribers, 1 500 transactions per second

• 54 classes
• 33 509 LOC
• 34% concurrent behavior

• Measurement

Heap consumption: 3.47 CPU load: 17.5

Original

Intrumented

Performance ratio between production and instrumented
versions is constant.

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 11 / 14



Equivalence assessment Indistiguishability
Analysis of behavior:

• Standard test suite
• 2 hours, no contract violations

• Faults introduced from Juniper’s defect database
• Instrumentation to print errors instead of assertion violations
• Reproduced all 139 functional and concurrent faults

• Influence of instrumentation on thread interleavings
• No additional locks

• Safepoint evaluation (inside synchronized)
• Commit points for wait conditions (inside synchronized)
• Locking predicates (use thread-local objects in pre- and

post-states)

• Limited locking
• ConcurrentHashMap optimized for concurrent access
• Writes only in pre- and post-states of methods with

requries /ensures thread safety

• Reads rarely acquire locks

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 12 / 14



Beyond the paper Comparison to SCOOP

Property Concurrent JML SCOOP
Syntax > 10 keywords separate

Internal state Safepoints No data races

External state Thread-safety Controlled arguments

Wait conditions Explicit Separate calls in
preconditions

Synchronization Explicit locking Controlled arguments

Deadlock
avoidance

Lock order Partial: controlled
arguments

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 13 / 14



Beyond the paper Open questions

For further discussion

• What is allowed between method entry and
requires safe point?

• Blocks concurrent behavior are combined using
conjunction. What about modularity?

• What feature of concurrent JML would be nice to have in
SCOOP?

• What can be improved or simplified in concurrent JML?

• Does lock order specification prevent from deadlocks?

A. Kogtenkov CCC seminar: Concurrent contracts for Java SS 2015 14 / 14


	Bibliography
	Concurrent DbC
	Interference
	Deadlock avoidance
	Equivalence assessment
	Beyond the paper

