Performance Regression Testing of
Concurrent Classes

BY MICHAEL PRADEL, MARKUS HUGGLER, THOMAS
R. GROSS

Goal

Automate for 2 versions of a concurrent class:

- Performance measurements
- Reliable (no false positives or true negatives)

- Meaningful (representative of real-world usage)

- Measurement evaluation

THOMAS MULLER, ETH ZURICH, CCC SEMINAR

18.03.2015

Algorithm overview: SpeedGun

1. Performance test generation

2. Performance measurements

3. Measurement evaluation

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Test generation

Given a class to evaluate, generate...

- Sequential initialization (called prefix)

- Concurrent usage (called suffixes)

ExpandoMetaClassInit vO = new ExpandoMetaClassInit();
ExpandoMetaClass vl = v0.unInitalizedExpandoMetaClass();
Class v2 = vl.getJavaClass();

ExpandoMetaClass x = new ExpandoMetaClass(v2, true);
x.getExpandoMethods () ;

Thread 1 | Thread N

' '

String v4 = x.toString(); x.initialize();
x.respondsTo(v4, v4, null); x.getClassNode() ;
X.isModified(); x.getProperties();

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Test generation (suffixes)

Which methods to test?

- Common interface of classes under test

—> Enables performance comparison

- Focus on methods with altered implementation

—> Only performance differences are interesting

- Other methods potentially required, can’t be ignored

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Test generation (suffixes)
Test length?

- OS-provided timers have limited accuracy

— No accurate measurement of short tests possible

- Too long tests have disadvantages, too
- Expensive to generate: O(n?), n := length of call sequence

- Little additional measurement value

Solutions:
—> Binary search for n via trial and error
— Call sequence of length +/n repeated /n times

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Performance measurements

Warm-u PP hase Algorithm 2 Gather execution times of a test.

Input: Test T; Number of repetitions r,, and r. for the
warm-up phase and the steady-state phase, respectively

Output: Set M of execution times or inconclusive
1: runGarbageCollection()

2: repeat(T, rw) > Warm-up phase
3 M0 > Start of steady-state phase
4: repeat

5 M MUrepeat AndMeasure(T, rs)

6

T

8

9

(allow JIT to optimize)

- until m,,;, measurements done

Measure a fixed amount of e

times M +— MU repeat AndM easure(T,r)
:if | M| = mpmas then

10: if o(M) < M Oucceptabie then
11: return M
12: else
13: return inconclusive
14: end if

Kee . tI 15: end if

P measuring unti 16: end while

variance acce ptable 17: return M > End of steady-state phase

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Performance measurements

How to measure execution time of a test?
- Only suffixes are relevant
- May or may not measure suffixes individually, depending on use case

Algorithm 3 repeat AndMeasure(T,r)

Input: Test T'; Number of repetitions r
Output: Execution time ¢

1: t+0

2: repeat
Execute prefix of T
Setup threads for suffixes of T’
start < currentTime() > Start measurement
for each thread do

Execute a suffix of T’

end for
t + t + currentTime() — start > Stop measurement
10: Clean up threads
11: until r repetitions done
12: returnt

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Measurement evaluation

Given execution times for a particular test...
- Compute mean and confidence interval

- Report performance difference if...
- Confidence intervals don’t overlap
- Difference between performances bigger than threshold

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Measurement evaluation

Given evaluations of all tests concerning a class...

- Report performance difference if the majority of the tests show a
performance difference in one direction

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Real-world experiment setup

- Manual analysis of changes to Java code bases based on commit
messages

- Comparison of SpeedGun’s results with manual analysis

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Experimental results

18.03.2015

ID Code base Class Revision Description Performance
Baseline| SpeedGun
| 8 thr. 64 thr.
(1) Pool GenericObjectPool 774007 Finer-grained locking to avoid deadlocks de- a 7152|7157
scribed in Issue 125
(2) Pool GenericObjectPool 603449 Replace synchronized methods with volatile a T 1.30) 7 1.38
fields to address Issue 113
(3) Pool GenericObjectPool 602773 Fix of a performance problem (Issue 93) by in- Va ©2.09| 7 2.20
troducing more fine-grained locking
(4) Collections StaticBucketMap 1076039 Fix of a correctness bug (Issue 334) by adding Ny Sy 0.64] N 0.61
synchronization
(5) JodaTime DateTime v2.1 Newer version is reported to decrease perfor- N N 091 091
mance over v1.5.2 due to additional synchroniza-
tion (Issue 153)
(6) Groovy ExpandoMetaClass d3da3a44 Add synchronized blocks to fix correctness prob- Ny Ny 048], 0.52
lem
(7) Groovy ExpandoMetaClass 1c947d6b Replace synchronized collections with project- Va 7108 7 1.29
internal concurrent collections
(8) Groovy ExpandoMetaClass 2b09801e Add synchronized block to fix correctness prob- N = —
lem
(9) Groovy ExpandoMetaClass feff5190 Synchronize methods to fix correctness bug (Is- Sy | 0.92] 0.96
sue 2166)
(10) Groovy ExpandoMetaClass 83629dcl Patch to improve (sequential) performance — 7139 7 1.38
(11) Groovy ExpandoMetaClass 77822d4c Replace project-internal concurrent collections A — y
with java.util.concurrent collections
(12) Groovy ExpandoMetaClass 6e349cd9 Large patch without any obvious effects on per- — |~ 0.88]%, 091
formance
(13) Groovy ExpandoMetaClass 26fc2100 Replace synchronized methods with volatile field a 150|142
to fix performance bug (Issue 3557)
(14) Groovy ExpandoMetaClass d92c12ab Replace volatile fields with synchronized meth- Ny Sy 0,95 0.95
ods to fix correctness problem
(15) Groovy ExpandoMetaClass 48269129 Replace synchronized method with volatile fields va 7103 —
to address performance problem (Issue 4182)
(16) Groovy ExpandoMetaClass ¢de39843 Supposed performance improvement by replac- Va — —
ing synchronized method with explicit locks
(17) Groovy ExpandoMetaClass d38da33c Replace volatile field with synchronized method N — y
to fix correctness bug

THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Experimental results

- SpeedGun coincides with majority of manual analysis

- Identified where expected performance improvements did not happen and
vice versa

- Quality versus quantity of reports controlled by threshold

100% Precision
Recall [}
80% r F-Measure =
B80%
40% |
20%
ﬂn‘#ﬁ‘ I] :]]]]]

0o 2 4 6 8 10 12 14
Threshold for reporting performance differences (%)

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Conclusion

Results:

- Goal met! No obvious issues found in real-world experiment.

Limitations:

- Running time of several hours per class
- Automatic test generation may be too artificial for real world

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Questions?

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

Thank you!

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR

