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Goal

Automate for 2 versions of a concurrent class:

- Performance measurements
- Reliable (no false positives or true negatives)

- Meaningful (representative of real-world usage)

- Measurement evaluation
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Algorithm overview: SpeedGun

1. Performance test generation

2. Performance measurements

3. Measurement evaluation
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Test generation

Given a class to evaluate, generate...

- Sequential initialization (called prefix)

- Concurrent usage (called suffixes)

ExpandoMetaClassInit vO = new ExpandoMetaClassInit();
ExpandoMetaClass vl = v0.unInitalizedExpandoMetaClass();
Class v2 = vl.getJavaClass();

ExpandoMetaClass x = new ExpandoMetaClass(v2, true);
x.getExpandoMethods () ;

Thread 1 |  Thread N

' '

String v4 = x.toString(); x.initialize();
x.respondsTo(v4, v4, null); x.getClassNode() ;
X.isModified(); x.getProperties();
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Test generation (suffixes)

Which methods to test?

- Common interface of classes under test

—> Enables performance comparison

- Focus on methods with altered implementation

—> Only performance differences are interesting

- Other methods potentially required, can’t be ignored
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Test generation (suffixes)
Test length?

- OS-provided timers have limited accuracy

— No accurate measurement of short tests possible

- Too long tests have disadvantages, too
- Expensive to generate: O(n?), n := length of call sequence

- Little additional measurement value

Solutions:
—> Binary search for n via trial and error
— Call sequence of length +/n repeated /n times
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Performance measurements

Warm-u PP hase Algorithm 2 Gather execution times of a test.

Input: Test T; Number of repetitions r,, and r. for the
warm-up phase and the steady-state phase, respectively

Output: Set M of execution times or inconclusive
1: runGarbageCollection()

2: repeat(T, rw) > Warm-up phase
3 M0 > Start of steady-state phase
4: repeat

5 M MUrepeat AndMeasure(T, rs)

6

T

8

9

(allow JIT to optimize)

- until m,,;, measurements done

Measure a fixed amount of e

times M +— MU repeat AndM easure(T,r)
:if | M| = mpmas then

10: if o(M) < M Oucceptabie then
11: return M
12: else
13: return inconclusive
14: end if

Kee . tI 15: end if

P measuring unti 16: end while

variance acce ptable 17: return M > End of steady-state phase
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Performance measurements

How to measure execution time of a test?
- Only suffixes are relevant
- May or may not measure suffixes individually, depending on use case

Algorithm 3 repeat AndMeasure(T,r)

Input: Test T'; Number of repetitions r
Output: Execution time ¢

1: t+0

2: repeat
Execute prefix of T
Setup threads for suffixes of T’
start < currentTime() > Start measurement
for each thread do

Execute a suffix of T’

end for
t + t + currentTime() — start > Stop measurement
10:  Clean up threads
11: until r repetitions done
12: returnt
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Measurement evaluation

Given execution times for a particular test...
- Compute mean and confidence interval

- Report performance difference if...
- Confidence intervals don’t overlap
- Difference between performances bigger than threshold
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Measurement evaluation

Given evaluations of all tests concerning a class...

- Report performance difference if the majority of the tests show a
performance difference in one direction
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Real-world experiment setup

- Manual analysis of changes to Java code bases based on commit
messages

- Comparison of SpeedGun’s results with manual analysis
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Experimental results

18.03.2015

ID Code base Class Revision Description Performance
Baseline| SpeedGun
| 8 thr. 64 thr.
(1) Pool GenericObjectPool 774007  Finer-grained locking to avoid deadlocks de- a 7152|7157
scribed in Issue 125
(2) Pool GenericObjectPool 603449  Replace synchronized methods with volatile a T 1.30) 7 1.38
fields to address Issue 113
(3) Pool GenericObjectPool 602773  Fix of a performance problem (Issue 93) by in- Va ©2.09| 7 2.20
troducing more fine-grained locking
(4) Collections StaticBucketMap 1076039 Fix of a correctness bug (Issue 334) by adding Ny Sy 0.64] N 0.61
synchronization
(5) JodaTime DateTime v2.1 Newer version is reported to decrease perfor- N N 091 091
mance over v1.5.2 due to additional synchroniza-
tion (Issue 153)
(6) Groovy ExpandoMetaClass d3da3a44 Add synchronized blocks to fix correctness prob- Ny Ny 048], 0.52
lem
(7) Groovy ExpandoMetaClass 1c947d6b Replace synchronized collections with project- Va 7108 7 1.29
internal concurrent collections
(8) Groovy ExpandoMetaClass 2b09801e Add synchronized block to fix correctness prob- N = —
lem
(9) Groovy ExpandoMetaClass feff5190 Synchronize methods to fix correctness bug (Is- Sy | 0.92] 0.96
sue 2166)
(10) Groovy ExpandoMetaClass 83629dcl Patch to improve (sequential) performance — 7139 7 1.38
(11) Groovy ExpandoMetaClass 77822d4c Replace project-internal concurrent collections A — y
with java.util.concurrent collections
(12) Groovy ExpandoMetaClass 6e349cd9 Large patch without any obvious effects on per- — |~ 0.88]%, 091
formance
(13) Groovy ExpandoMetaClass 26fc2100 Replace synchronized methods with volatile field a 150|142
to fix performance bug (Issue 3557)
(14) Groovy ExpandoMetaClass d92c12ab Replace volatile fields with synchronized meth- Ny Sy 0,95 0.95
ods to fix correctness problem
(15) Groovy ExpandoMetaClass 48269129 Replace synchronized method with volatile fields va 7103 —
to address performance problem (Issue 4182)
(16) Groovy ExpandoMetaClass ¢de39843 Supposed performance improvement by replac- Va — —
ing synchronized method with explicit locks
(17) Groovy ExpandoMetaClass d38da33c Replace volatile field with synchronized method N — y
to fix correctness bug
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Experimental results

- SpeedGun coincides with majority of manual analysis

- Identified where expected performance improvements did not happen and
vice versa

- Quality versus quantity of reports controlled by threshold

100% Precision
Recall [}
80% r F-Measure =
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Threshold for reporting performance differences (%)
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Conclusion

Results:

- Goal met! No obvious issues found in real-world experiment.

Limitations:

- Running time of several hours per class
- Automatic test generation may be too artificial for real world
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Questions?
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Thank you!

18.03.2015 THOMAS MULLER, ETH ZURICH, CCC SEMINAR




