
Safe Asynchronous
Multicore Memory
Operations
Matko Botincan, Mike Dodds, Alastair F. Donaldson,
Matthew J. Parkinson

MOTIVATION

◦ Asynchronous memory
operations are efficient

◦ Programs using them are prone
to bugs (data races, memory
safety)

◦ It is difficult to detect such bugs
due to nondeterminism

◦ -> Need for formal verification
techniques!

MAIN CONTRIBUTIONS

◦ Extension of separation logic for
asynchronous memory
operations

◦ Automation of proof technique
◦ Prototype implementation for a

C-like language

Asynchronous memory operations

BASIC ARCHITECTURE LAYOUT

Host

host (main)
memory

acc

local memory

acc

local memory

acc

local memory

acc

local memory

Core

Memory

Regular access

Special access (asynchronous)

OPERATIONS

◦ get(x, y, s, t): copy a block of s
bytes starting at host address y
to local address x using tag t

◦ put(x, y, s, t): copy a block of s
bytes starting at local address x
to host address y using tag t

◦ wait(t): wait for all operations
associated with t to terminate

DATA RACES

A get issued by ci can race with:
◦ A regular read or write by ci
◦ A get or put by ci
◦ A regular write access by the

host core
◦ A put by cj (where i might be

equal to j)
… given that the respective
operations access overlapping
memory regions

Implementation in separation
logic with permissions

AVOIDING DATA RACES USING PERMISSIONS

◦ Permission: Real number p∊(0, 1]
◦ p = 1: Write permission
◦ p∊(0, 1): Read permission
◦ Permissions can be split
◦ After issuing a get or put, the

thread loses the respective
permissions until wait is called

-> This guarantees absence of
data races!

PERMISSIONS - EXAMPLE

{a: 1, b: 1, c: 1, d: 1, e: 1}

get(a, d, 3, t1)

put(c, e, 3, t1)

get(b, d, 3, t1)

{a: 0, b: 1, c: 1, d: 1/2, e: 1}

{a: 0, b: 0, c: 1, d: 1/4, e: 1}

wait(t1)

{a: 0, b: 0, c: 1/2, d: 1/4, e: 0}

{a: 1, b: 1, c: 1, d: 1, e: 1}

SEPARATION LOGIC RECAP

◦ Separation logic = Hoare logic +
separating conjunction (‘∗’)

◦ Hoare triple: {P} C {Q}
◦ P1 ∗ P2: Heap (memory) can be

divided into two disjoint parts
such that one satisfies P1 and the
other satisfies P2

EXAMPLE: SPECIFICATION OF get

◦ Thread needs read access y and
write access to x

◦ After issuing get, the thread
loses the permissions (needs to
call wait)

◦ Thread might still read from y if
it has an additional permission

EXAMPLE PROOF OUTLINE (FROM PAPER)

◦ Permissions can be split
arbitrarily

◦ The respective permissions are
temporarily lost after a get (or
put) is issued (until wait)

Automation and Implementation

AUTOMATION AND IMPLEMENTATION

◦ asyncStar: tool built upon
coreStar

http://www.cl.cam.ac.uk/~mb741/papers/boogie11.pdf
http://www.cl.cam.ac.uk/~mb741/papers/boogie11.pdf

ISSUES WITH AUTOMATION

◦ Permissions as fractions in (0, 1]
-> Represent them with binary
trees

◦ Symbolic execution alone often
does not converge
-> Combine with abstract
interpretation

◦ Calls to SMT solver expensive
-> Only call the solver if
necessary

EVALUATION (ALL TIMINGS IN SECONDS)

OPEN QUESTIONS/ISSUES

◦ The system is sound but not
necessarily complete

◦ Proof of soundness?
◦ Evaluation: Only tested

removing one wait (not a
problem given that system is
sound)

CONCLUSION

◦ Being able to automatically
prove race-freeness of a
program is a huge benefit

◦ The presented prototype
achieves this for a C-like
language

◦ Could provide the basis for
more advanced tools and
applied in other domains

