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MOTIVATION

◦ Asynchronous memory 
operations are efficient

◦ Programs using them are prone 
to bugs (data races, memory 
safety)

◦ It is difficult to detect such bugs 
due to nondeterminism

◦ -> Need for formal verification 
techniques!



MAIN CONTRIBUTIONS

◦ Extension of separation logic for 
asynchronous memory 
operations

◦ Automation of proof technique
◦ Prototype implementation for a 

C-like language



Asynchronous memory operations



BASIC ARCHITECTURE LAYOUT
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OPERATIONS

◦ get(x, y, s, t): copy a block of s 
bytes starting at host address y 
to local address x using tag t

◦ put(x, y, s, t): copy a block of s 
bytes starting at local address x 
to host address y using tag t

◦ wait(t): wait for all operations 
associated with t to terminate



DATA RACES

A get issued by ci can race with:
◦ A regular read or write by ci
◦ A get or put by ci
◦ A regular write access by the 

host core
◦ A put by cj (where i might be 

equal to j)
… given that the respective 
operations access overlapping 
memory regions



Implementation in separation 
logic with permissions



AVOIDING DATA RACES USING PERMISSIONS

◦ Permission: Real number p∊(0, 1]
◦ p = 1:  Write permission
◦ p∊(0, 1): Read permission
◦ Permissions can be split
◦ After issuing a get or put, the 

thread loses the respective 
permissions until wait is called

-> This guarantees absence of 
data races!



PERMISSIONS - EXAMPLE

{a: 1, b: 1, c: 1, d: 1, e: 1}

get(a, d, 3, t1)

put(c, e, 3, t1)

get(b, d, 3, t1)

{a: 0, b: 1, c: 1, d: 1/2, e: 1}

{a: 0, b: 0, c: 1, d: 1/4, e: 1}

wait(t1)

{a: 0, b: 0, c: 1/2, d: 1/4, e: 0}

{a: 1, b: 1, c: 1, d: 1, e: 1}



SEPARATION LOGIC RECAP

◦ Separation logic = Hoare logic + 
separating conjunction (‘∗’)

◦ Hoare triple: {P} C {Q}
◦ P1 ∗ P2: Heap (memory) can be 

divided into two disjoint parts 
such that one satisfies P1 and the 
other satisfies P2



EXAMPLE: SPECIFICATION OF get

◦ Thread needs read access y and 
write access to x

◦ After issuing get, the thread 
loses the permissions (needs to 
call wait)

◦ Thread might still read from y if 
it has an additional permission



EXAMPLE PROOF OUTLINE (FROM PAPER)

◦ Permissions can be split 
arbitrarily

◦ The respective permissions are 
temporarily lost after a get (or 
put) is issued (until wait)



Automation and Implementation



AUTOMATION AND IMPLEMENTATION

◦ asyncStar: tool built upon 
coreStar

http://www.cl.cam.ac.uk/~mb741/papers/boogie11.pdf
http://www.cl.cam.ac.uk/~mb741/papers/boogie11.pdf


ISSUES WITH AUTOMATION

◦ Permissions as fractions in (0, 1]
-> Represent them with binary 
trees

◦ Symbolic execution alone often 
does not converge
-> Combine with abstract 
interpretation

◦ Calls to SMT solver expensive
-> Only call the solver if 
necessary



EVALUATION (ALL TIMINGS IN SECONDS)



OPEN QUESTIONS/ISSUES

◦ The system is sound but not 
necessarily complete

◦ Proof of soundness?
◦ Evaluation: Only tested 

removing one wait (not a 
problem given that system is 
sound)



CONCLUSION

◦ Being able to automatically 
prove race-freeness of a 
program is a huge benefit

◦ The presented prototype 
achieves this for a C-like 
language

◦ Could provide the basis for 
more advanced tools and 
applied in other domains


