e Safe Asynchronous
Multicore Memory
Operations

Matko Botincan, Mike Dodds, Alastair F. Donaldson,
Matthew J. Parkinson

® MOTIVATION

() o Asynchronous memory
operations are efficient

o Programs using them are prone
to bugs (data races, memory
safety)

o |t is difficult to detect such bugs
due to nondeterminism

o =>» Need for formal verification
techniques!

C

® MAIN CONTRIBUTIONS

) o Extension of separation logic for
asynchronous memory
operations

o Automation of proof technique

o Prototype implementation for a
C-like language

‘ Asynchronous memory operations

Core

® BASIC ARCHITECTURE LAYOUT

Memory

A

Regular access

() Special access (asynchronous)

local memory local memory

host (main)
memory

local memory local memory

® OPERATIONS

() o get(x,y,s,t). copy a block of s
bytes starting at host address y
to local address x using tag t

o put(x,y,s,t). copy a block of s
oytes starting at local address x
to host address y using tag t

o wait(t): wait for all operations
associated with t to terminate

C

® DATARACES

) A getissued by c. can race with:

(o)

(o)

(o)

A regular read or write by ¢,

A get or put by c.

A reqular write access by the
host core

A put by c (where i might be
equal to |)

.. given that the respective
operations access overlapping
memory regions

‘ Implementation in separation
logic with permissions

® AVOIDING DATA RACES USING PERMISSIONS

() o Permission: Real number p€(0, 1]

o p = 1. Write permission

o pE(0, 1): Read permission

o Permissions can be split

o After issuing a get or put, the
thread loses the respective
permissions until wait is called

-> This guarantees absence of
data races!

® PERMISSIONS - EXAMPLE

® get(a,d 3 t)

® get(b, d, 3, t.)

Q put(c, e, 3, t)

. wait(t)

{a:1, b:1,c:1,d:1, e: 1}

{0: 0, b:1,c:1,d:1/2, e: 1}

{a:0,b:0,c:1,d:1/4, e: 1}

{a:0,b:0,c:1/2,d:1/4, e: O}

{a:1, b:1,c:1,d:1, e: 1}

® SEPARATION LOGIC RECAP

() o Separation logic = Hoare logic +
separating conjunction (')

o Hoare triple: {P} C {Q}

o P, * P,iHeap (memory) can be
divided into two disjoint parts
such that one satisfies P, and the
other satisties P,

{P} C{Q}
(Px F}C{Q * F}

FRAME

® EXAMPLE: SPECIFICATION OF get

{arr)(z, s, 1, xs) * arry(y, s, p,ys) * pend(t, O)}
get(x,y,s,t)
{pend(t, {<yh7 Ly, S, P, y8> U O}

o Thread needs read access y and
write access to x

o After issuing get, the thread
loses the permissions (needs to
call wait)

o [Thread might still read from y if
it has an additional permission

® EXAMPLE PROOF OUTLINE (FROM PAPER)

) {arrg(w, s,1,xs) *arry(z,s,1,2zs) x arrp(y, s, %,ys) * pend(t, @)}

get(z,y, s,t);
{arre(z, 5,1, 28) xarrn(y, s, 3,ys) * pend (¢, {(yn, ¢, 5, 3,¥5)}) }

get(z,y,s,1);
{pend (t, {(yn, e, 5, 1, ys), (yn, 2¢, 5, 2, ys)}) }

o Permissions can be split
arbitrarily

o [he respective permissions are
temporarily lost after a get (or
put) is issued (until wait)

‘ Automation and Implementation

AUTOMATION AND IMPLEMENTATION

o asyncStar: tool built upon
coresStar

i? coreStar

. Theorem prover SMT solver
Logic rules

Abstraction rules N
Abstraction APRON

8

Symbolic execution

Pre-/post-conditions
. . coreStarlL program
Loop invariants
VMC program Emmmm) VMC frontend

http://www.cl.cam.ac.uk/~mb741/papers/boogie11.pdf
http://www.cl.cam.ac.uk/~mb741/papers/boogie11.pdf

C

® [SSUES WITH AUTOMATION

) o Permissions as fractions in (0, 1]
-7 Represent them with binary
trees

o Symbolic execution alone often
does not converge
-> Combine with abstract
interpretation

o Calls to SMT solver expensive
-> Only call the solver if
necessary

® EVALUATION (ALL TIMINGS IN SECONDS)

“particlesim || 564 | 331 [<1] 98|
Thuffer || 67 13 <1[89
ThufferfO || 80 | 31 <1[94|
Obuffer || 259 [1268 | <1 99|
“hufferTO || 286 | 1871 | <1 > 99|
huffer || 412 [7681 | <1 > 99|
SbufferfO || 443 [8416 | <1 > 99 |

Buggy
Benchmark || Symbolic | Total WAL | %SMT
states | time ? 7
pariclesim [S8 27| 3 07
Cbaffer [32| 7] <I| 97

Thufferto || 36 | 16| <1 |
huffer || 83 | 318 | <1 S99
hufferfO || 88 | 389 | <1 99|
Shuffer || T3 | 618 | <1 99|
SbuffertO || 121 | 663 | <1] > 99|

C

® OPEN QUESTIONS/ISSUES

) o The system is sound but not
necessarily complete

o Proof of soundness?

o Evaluation: Only tested
removing one wait (not a

oroblem given that system is
sound)

C

® CONCLUSION

) o Being able to automatically
prove race-freeness of @
porogram is a huge benefit

o [he presented prototype
achieves this for a C-like
langquage

o Could provide the basis for
more advanced tools and
applied in other domains

