PQL: A Purely-Declarative Java Extension for Parallel Programming

Peter Pilgerstorfer

PQL

• Declarative query language for parallel programs
 • First order logic
• Java Extension
• Design goals
 • Easy to write parallel code
 • Focus on performance
• Not Turing complete
Overview

• Queries
• Implementation
• Evaluation
Quantifying Queries

• Boolean expression

• Syntax

\[
\langle QUANT \rangle\langle ID \rangle : \langle QUERY \rangle
\]

• Examples

\[
\text{forall int } x : x == x
\]
\[
\text{exists int } x : \text{myArray}[x] == x
\]
Container Queries

- Create a Map, Set or Array
- Syntax
 \[\text{query}((\text{MATCH})):\langle\text{QUERY}\rangle \]
- Examples
 \[\text{query}(\text{Set.contains}(x)) : \text{range}(1,10).\text{contains}(x) \]
 \[\text{query}(\text{Map.get}(x) == y) :
 \text{range}(1,10).\text{contains}(x) \&\& y == 2*x \]
Reduction Queries

• Compute reduction

• Syntax
 \[\text{reduce}(\langle OP \rangle) \langle ID \rangle [\text{over} \langle IDs \rangle] : \langle QUERY \rangle \]

• Examples
 \[\text{reduce}(\text{sumInt}) \text{ int } x : \text{mySet}.\text{contains}(x) \]
 \[\text{reduce}(\text{sumInt}) \text{ int } x \text{ over } y : \text{myMap}.\text{get}(y) == x \]

• (restricted) user defined operations possible
Implementation

• Translate PQL into intermediate language PQIL
 • Only reduce operations and joined expressions
 • Java expressions are seen as constants
• Translate PQIL to nested loops before compilation
Implementation - Access Path Selection

\[\text{query} (\text{Set.contains}(y)) : \]
\[\text{func}(x) == y \land \text{arr}[x] == y \]

• Relation size
• Parallelizability
 • In practice outer loop parallel
 • Loop has to be large enough
Optimization

• Eliminate redundant joins
• Merge nested queries
 • Original:
 \[
 \text{query(Map.get(key) == newset):}
 \]
 \[
 \text{ newset == query(Set.contains(value)): array[value] == key;}
 \]
 • Merged:
 \[
 \text{query(Map.get(key) == Set.contains(value)):}
 \]
 \[
 \text{ array[value] == key;}
 \]
Evaluation – Lines of Java code

Manual	Manual-Parallel	Hadoop	SQL	PQL
bonus	threegrep	webgraph	wordcount	

Legend:
- bonus
- threegrep
- webgraph
- wordcount
Evaluation - Speed
Evaluation - Speed

[Graph showing average execution time vs. number of Java threads for pqm, para-manual, and manual modes. The pqm mode shows a consistently lower execution time across all thread counts.]
Discussion

• Declarative language
• Works with Java data structures
• Little computational overhead compared to manual parallelization