
EnforceMOP:
A Runtime Property Enforcement System for Multithreaded
Programs

Qingzhou Luo, Grigore Rosu

JavaMOP
- Runtime verification system
- Monitoring-oriented programming (MOP)
- Specify properties which should always hold in a Java

program
- Properties defined separately from source code
- JavaMOP warns you when properties are broken
- Logic-independent architecture
- Monitors monitoring objects

EnforceMOP
- Instead of warning when a property is violated,

EnforceMOP blocks thread before property is violated
until thread can continue without violating property

- If all threads are blocked by EnforceMOP, i.e. deadlock,
user-specified code runs.

- Users can specify code to run when a thread is blocked

Use cases

1. Enforce properties in a program to avoid
concurrency bugs, as an alternative to
manual synchronization

2. Enforce scheduling decisions in unit
tests, to be able to reliably test different
scheduling possibilities

Use cases

- Enforce properties in a program to avoid
concurrency bugs

- Less error-prone than manual
synchronization

- More modular: Separated from source code
- Possibly faster: Avoids over-synchronization

Example (1)

Concurrent Modification of ArrayList

Use cases

- Enforce scheduling decisions in unit
tests

- Faster and more reliable than alternatives
- More modular: same source code can be run

with different properties to get different
schedules

Example (2)

Logic plugins

- Properties can be expressed in different
logic formalisms

- Different formalisms work well for different
problems

- Currently supported by EnforceMOP:
 FSM, ERE, LTL, PTLTL, CFG, SRS

Implementation
- Specification file is compiled together with Java source

file by EnforceMOP compiler to create Java bytecode.
- Before each event, the monitor is cloned and the event

is executed. If a condition fails, the original monitor
blocks.

- If a new event is generated on any thread, redo the
above on all monitors

- Drawback: One step lookahead might not be enough for
some logic formalisms

Evaluation
- Can be used to solve difficult synchronization bugs in a

simple and straightforward fashion

- Can be used to increase performance by avoiding over-
synchronization

Related work
- Most other runtime verification systems have hardwired

specification languages
- Other existing runtime verification systems monitor,

rather than enforce properties.
- As a scheduling framework for testing, EnforceMOP is

more powerful and usually faster than alternatives.

Conclusions

- Very powerful framework
- Somewhat complicated
- Might lead to new innovations in

programming languages

Thank you for listening!

