EnforceMOP:

A Runtime Property Enforcement System for Multithreaded
Programs

Qingzhou Luo, Grigore Rosu

JavaMOP

- Runtime verification system

- Monitoring-oriented programming (MOP)

- Specify properties which should always hold in a Java
program

- Properties defined separately from source code

- JavaMOP warns you when properties are broken

- Logic-independent architecture

- Monitors monitoring objects

EnforceMOP

- Instead of warning when a property is violated,
EnforceMOP blocks thread before property is violated
until thread can continue without violating property

- If all threads are blocked by EnforceMORP, i.e. deadlock,
user-specified code runs.

- Users can specify code to run when a thread is blocked

Use cases

1. Enforce properties in a program to avoid
concurrency bugs, as an alternative to
manual synchronization

2. Enforce scheduling decisions in unit
tests, to be able to reliably test different
scheduling possibilities

Use cases

- Enforce properties in a program to avoid
concurrency bugs

- Less error-prone than manual
synchronization

- More modular: Separated from source code

- Possibly faster: Avoids over-synchronization

1 enforce SafeList_lteration(Collection c, Iterator i) {

2 creation event create after(Collection c) returning(lterator i) :
3 call(lterator Iterable+.iterator()) && target(c) {}
4

Exa m p I e (1) event modify before(Collection c) :
6 (

call(* Collection+.addx(..)) ||
8 call(* Collection+-.clear(..)) ||
9 call(* Collection+.offerx(..)) ||
10 call(* Collection+.pop(..)) ||
11 call(* Collection+.push(..)) ||
L o L] . 12 call(* Collection+.removex(..)) ||
Concurrent Modification of ArrayList = i coen i)
14) && target(c) {}
15
16 event next before(lterator i) :
17 call(* Iterator.next(..)) && target(i) {}
18
19 event hasnextfalse after(lterator i) returning(boolean b) :
20 call(* Iterator+.hasNext()) && target(i) && condition(!b) {}
21
22 fsm :
23 na [
24 create —> init
25]
26 init [
27 next —> unsafe
28 hasnextfalse —> safe
29]
30 unsafe [
31 next —> unsafe
32 hasnextfalse —> safe
33]
34 safe [
35 modify —> safe
36 hasnextfalse —> safe
37 next —> safe
38]
39
10 @nonfail {}
41
42 @deadlock { System.out.println("Deadlock detected!"); }

43 }

Use cases

- Enforce scheduling decisions in unit

tests
- Faster and more reliable than alternatives

- More modular: same source code can be run
with different properties to get different
schedules

Example (2)

1
2
3
1
5

6

-
i

10
11
12
13
14
15
16
17
18

[VR v
-

(5

Q@Test
public void testPutWithTake() throws InterruptedException {

final SynchronousQueue q = new SynchronousQueue();
Thread t = new Thread(new CheckedRunnable() {

public void realRun() throws InterruptedException {

int added = 0;
try {
while (true) {
q.put(added);
++added;

} catch (InterruptedException success) {
assertEquals("PutWithTake", 1, added);
}
+}. "putThread");

t.start();
Thread.sleep(SHORT_DELAY_MS);
assertEquals("PutWithTake",0, q.take());
Thread.sleep(SHORT_DELAY_MS);
t.interrupt();

t.join();

1
2
3
4
5

14
15
16
17
18
19
20

1

o

2
3

LI TV IV

& o

enforce SynchronousQueueTest-testPutWithTake() {
String putThread = ',

event beforeinterrupt before() :

call(= Thread+.interrupt()) && threadBlocked(putThread){}

event beforetake before() :

call(= SynchronousQueue+.take()) && threadBlocked(putThread){}

event beforeput before() :
call(= SynchronousQueue+.put(..)) {
if (putThread.equals(™)) {
putThread = Thread.currentThread().getName();
}

ere : beforeput+ beforetake beforeput+ beforeinterrupt

@nonfail {}

@deadlock {System.out.println("Deadlock detected!");}
}

Logic plugins

- Properties can be expressed in different

ogic formalisms

- Different formalisms work well for different
problems

- Currently supported by EnforceMOP:

FSM, ERE, LTL, PTLTL, CFG, SRS

Implementation

- Specification file is compiled together with Java source
file by EnforceMOP compiler to create Java bytecode.

- Before each event, the monitor is cloned and the event
Is executed. If a condition fails, the original monitor
blocks.

- If a new event is generated on any thread, redo the
above on all monitors

- Drawback: One step lookahead might not be enough for
some logic formalisms

Evaluation

- Can be used to solve difficult synchronization bugs in a
simple and straightforward fashion

- Can be used to increase performance by avoiding over-
synchronization

Related work

- Most other runtime verification systems have hardwired
specification languages

- Other existing runtime verification systems monitor,
rather than enforce properties.

- As a scheduling framework for testing, EnforceMORP is
more powerful and usually faster than alternatives.

Conclusions

- Very powerful framework

- Somewhat complicated

- Might lead to new innovations in
programming languages

Thank you for listening!

