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Problem outline

Find (real) deadlocks

Static techniques
- Analyze code
- Many false positives

Dynamic techniques
- „Educated“ scheduling
- Still many false positives
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(a) Find potential deadlocks

(b) Automatically confirm potential deadlocks
‣ Eliminate false positives
‣ Do not eliminate true positives

3

CONLOCK

Goals
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Events
‣ Lock acquisition or release

Lockset
‣ Set of locks hold by one 

thread

Cycles
‣ Chain of events ε, that build a 

circular dependency
‣ potential deadlock

acq: a
lockset: {p, m}

acq: n
lockset: {a}

acq: p
lockset: {n, o}

e1

e2

e3

4

CONLOCK

Concepts
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Example

01 acq(n) 
02 rel(n) 
03 acq(a) 
04 acq(n) 
05 rel(n) 
06 acq(p) 
07 acq(m) 
08 acq(n)

10 acq(a) 
11 rel(a) 
12 acq(n) 
13 acq(p)

thread 1 thread 2

{} 
{n} 
{} 
{a} 
{a,n} 
{a} 
{a,p} 
{a,m,p}

{} 
{a} 
{} 
{n}

LocksetsEvents LocksetsEvents

Cycle cε1 ε2
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Approach

Phase 0: Identify cycles

Phase 1: Generate constraints
‣ Analyze order of operations
‣ Provoke deadlock

Phase 2: Educated scheduling of execution
‣ No violation of any constraint
‣ Trigger deadlock (if any)
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Phase 1: Constraints

Rule 1:
Deadlock event εɑ on tɑ is an acq. of lock o. 
⇒ All operations of any thread tβ≠ɑ on o must happen before εɑ.

Rule 2:
Thread tɑ holds lock on object o from e1 until its deadlock event εɑ.
⇒ All operations (except εβ) of any thread tβ≠ɑ on o must happen before e1.

Should happen before relation: e1 ↝ e2



of 168

CONLOCK

Phase 1: Example

01 acq(n) 
02 rel(n) 
03 acq(a) 
04 acq(n) 
05 rel(n) 
06 acq(p) 
07 acq(m) 
08 acq(n)

10 acq(a) 
11 rel(a) 
12 acq(n) 
13 acq(p)

thread 1 thread 2

{ , , , } 
{ , ,n, } 
{ , , , } 
{a, , , } 
{a, ,n, } 
{a, , , } 
{a, , ,p} 
{a,m, ,p}

{ , , , } 
{a, , , } 
{ , , , } 
{ , ,n, }

LocksetsEvents LocksetsEvents

01   
02   
03   
04   
05   
06   
07   
08  

Rule 1:
Deadlock event εɑ on tɑ is an acq. of lock o. 
⇒ All operations of any thread tβ≠ɑ on o must happen before εɑ.
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Phase 1: Example

01 acq(n) 
02 rel(n) 
03 acq(a) 
04 acq(n) 
05 rel(n) 
06 acq(p) 
07 acq(m) 
08 acq(n)

10 acq(a) 
11 rel(a) 
12 acq(n) 
13 acq(p)

thread 1 thread 2

{ , , , } 
{ , ,n, } 
{ , , , } 
{a, , , } 
{a, ,n, } 
{a, , , } 
{a, , ,p} 
{a,m, ,p}

{ , , , } 
{a, , , } 
{ , , , } 
{ , ,n, }

LocksetsEvents LocksetsEvents

01   
02   
03   
04   
05   
06   
07   
08  

Rule 2:
Thread tɑ holds lock on object o from e1 until its deadlock event εɑ.
⇒ All operations (except εβ) of any thread tβ≠ɑ on o must happen before e1.
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Phase 1: Optimization

Reduce Constraint set
‣ Transitivity
‣ Program Locking Order

Nearest Scheduling points
‣ Nearest operation where lockset is empty
‣ Only consider operations from NSPs

e01 ↝ e15 
e02 ↝ e15 
e04 ↝ e15 

e05 ↝ e15 
e06 ↝ e16 
e13 ↝ e03 

e14 ↝ e03 
e15 ↝ e08
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Phase 2: Scheduling

Schedule randomly (by OS)
‣ Keep track of constraints
‣ Only „non-violating“ operations get performed

No progress possible?
‣ Deadlock? Output trace and halt. Success!
‣ No deadlock? Report scheduling violation, deadlock not possible 

anymore. Start over.
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Analysis
Experiment
‣ Code from JDBC Connector, SQLite and MySQL Server
‣ Compare with other deadlock detectors (PCT, MagicScheduler, 

DeadlockFuzzer)
‣ 100 runs each

‣ Test precision and efficiency for known deadlock
‣ Test efficiency for false positives
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Analysis
Deadlock detection probability

0

0.5

1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
PCT MagicScheduler DeadlockFuzzer ConLock

Runtime

0

2.5

5

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Native PCT MagicScheduler DeadlockFuzzer ConLock
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Analysis
False positives
‣ Analysed 87 false positives
‣ All other deadlock detection algorithms timed out
‣ All but one run of Conlock showed scheduling violations

→ Probabilistic method to discard cycles
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Conclusion
Limitations
‣ Sufficient test set?
‣ False positives? → Manual inspection!
‣ Can it find unknown bugs?

Contributions
‣ Successful new approach
‣ Significantly improved precision
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Thank you.


