
CONLOCK
A Constraint-Based approach to dynamic checking on
Deadlocks in multithreaded programs

Yan Cai, Shangru Wu, W.K. Chan
ICSE 14

CCC Seminar, ETH Zürich
March 11, 2015

Fabian Stutz

of 162

CONLOCK

Problem outline

Find (real) deadlocks

Static techniques
- Analyze code
- Many false positives

Dynamic techniques
- „Educated“ scheduling
- Still many false positives

of 16

(a) Find potential deadlocks

(b) Automatically confirm potential deadlocks
‣ Eliminate false positives
‣ Do not eliminate true positives

3

CONLOCK

Goals

of 16

Events
‣ Lock acquisition or release

Lockset
‣ Set of locks hold by one

thread

Cycles
‣ Chain of events ε, that build a

circular dependency
‣ potential deadlock

acq: a
lockset: {p, m}

acq: n
lockset: {a}

acq: p
lockset: {n, o}

e1

e2

e3

4

CONLOCK

Concepts

of 165

CONLOCK

Example

01 acq(n)
02 rel(n)
03 acq(a)
04 acq(n)
05 rel(n)
06 acq(p)
07 acq(m)
08 acq(n)

10 acq(a)
11 rel(a)
12 acq(n)
13 acq(p)

thread 1 thread 2

{}
{n}
{}
{a}
{a,n}
{a}
{a,p}
{a,m,p}

{}
{a}
{}
{n}

LocksetsEvents LocksetsEvents

Cycle cε1 ε2

of 166

CONLOCK

Approach

Phase 0: Identify cycles

Phase 1: Generate constraints
‣ Analyze order of operations
‣ Provoke deadlock

Phase 2: Educated scheduling of execution
‣ No violation of any constraint
‣ Trigger deadlock (if any)

of 167

CONLOCK

Phase 1: Constraints

Rule 1:
Deadlock event εɑ on tɑ is an acq. of lock o.
⇒ All operations of any thread tβ≠ɑ on o must happen before εɑ.

Rule 2:
Thread tɑ holds lock on object o from e1 until its deadlock event εɑ.
⇒ All operations (except εβ) of any thread tβ≠ɑ on o must happen before e1.

Should happen before relation: e1 ↝ e2

of 168

CONLOCK

Phase 1: Example

01 acq(n)
02 rel(n)
03 acq(a)
04 acq(n)
05 rel(n)
06 acq(p)
07 acq(m)
08 acq(n)

10 acq(a)
11 rel(a)
12 acq(n)
13 acq(p)

thread 1 thread 2

{ , , , }
{ , ,n, }
{ , , , }
{a, , , }
{a, ,n, }
{a, , , }
{a, , ,p}
{a,m, ,p}

{ , , , }
{a, , , }
{ , , , }
{ , ,n, }

LocksetsEvents LocksetsEvents

01
02
03
04
05
06
07
08

Rule 1:
Deadlock event εɑ on tɑ is an acq. of lock o.
⇒ All operations of any thread tβ≠ɑ on o must happen before εɑ.

of 169

CONLOCK

Phase 1: Example

01 acq(n)
02 rel(n)
03 acq(a)
04 acq(n)
05 rel(n)
06 acq(p)
07 acq(m)
08 acq(n)

10 acq(a)
11 rel(a)
12 acq(n)
13 acq(p)

thread 1 thread 2

{ , , , }
{ , ,n, }
{ , , , }
{a, , , }
{a, ,n, }
{a, , , }
{a, , ,p}
{a,m, ,p}

{ , , , }
{a, , , }
{ , , , }
{ , ,n, }

LocksetsEvents LocksetsEvents

01
02
03
04
05
06
07
08

Rule 2:
Thread tɑ holds lock on object o from e1 until its deadlock event εɑ.
⇒ All operations (except εβ) of any thread tβ≠ɑ on o must happen before e1.

of 1610

CONLOCK

Phase 1: Optimization

Reduce Constraint set
‣ Transitivity
‣ Program Locking Order

Nearest Scheduling points
‣ Nearest operation where lockset is empty
‣ Only consider operations from NSPs

e01 ↝ e15
e02 ↝ e15
e04 ↝ e15

e05 ↝ e15
e06 ↝ e16
e13 ↝ e03

e14 ↝ e03
e15 ↝ e08

of 1611

CONLOCK

Phase 2: Scheduling

Schedule randomly (by OS)
‣ Keep track of constraints
‣ Only „non-violating“ operations get performed

No progress possible?
‣ Deadlock? Output trace and halt. Success!
‣ No deadlock? Report scheduling violation, deadlock not possible

anymore. Start over.

of 1612

CONLOCK

Analysis
Experiment
‣ Code from JDBC Connector, SQLite and MySQL Server
‣ Compare with other deadlock detectors (PCT, MagicScheduler,

DeadlockFuzzer)
‣ 100 runs each

‣ Test precision and efficiency for known deadlock
‣ Test efficiency for false positives

of 1613

CONLOCK

Analysis
Deadlock detection probability

0

0.5

1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
PCT MagicScheduler DeadlockFuzzer ConLock

Runtime

0

2.5

5

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Native PCT MagicScheduler DeadlockFuzzer ConLock

of 1614

CONLOCK

Analysis
False positives
‣ Analysed 87 false positives
‣ All other deadlock detection algorithms timed out
‣ All but one run of Conlock showed scheduling violations

→ Probabilistic method to discard cycles

of 1615

CONLOCK

Conclusion
Limitations
‣ Sufficient test set?
‣ False positives? → Manual inspection!
‣ Can it find unknown bugs?

Contributions
‣ Successful new approach
‣ Significantly improved precision

of 1616

Thank you.

