
CARE
Cache Guided Deterministic Replay for Concurrent Java Programs

Yanyan Jiang

Tianxiao Gu

Chang Xu

Xiaoxing Ma

Jian Lu



What is it about?

• Concurrent programs are difficult to debug.

• Use deterministic replay

• Search-based
• Small log, small record cost, incomplete

• Best-effort exhaustive state space search

• Order-based
• Record dependences among key events: R/W, (un)lock

• Huge logs: STRIDE 30MB/s → Performance degradation

• Easy replay



CARE

• Cache guided deterministic replay

• Key Idea: Take advantage of thread locality 
• i.e. no need to record access to same variable by same thread twice.

• Only record dependencies among different Threads

• Cache miss → other thread did access same variable

• Cache miss detected by value prediction cache



Value Prediction Cache

T1

x = 1;

y = 2;

read x;

VPC:

x = 1

y = 2

T2

z = 2;

VPC:

z = 2

Real cache:

x = 1

y = 2

Real cache:

z = 2

No cache miss



Value Prediction Cache

T1

x = 1;

y = 2;

read x;

VPC:

x = 1

y = 2

T2

x = 2;

VPC:

x = 2

Real cache:

x = Invalid

y = 2

Real cache:

x = 2



Value Prediction Cache

T1

x = 1;

y = 2;

read x;

VPC:

x = 1

y = 2

T2

x = 2;

VPC:

x = 2

Real cache:

x = 2

y = 2

Real cache:

x = 2

Cache miss 

detected



Value Prediction Cache

T1

x = 1;

y = 2;

read x;

VPC:

x = 1

y = 2

T2

x = 1;

VPC:

x = 1

Real cache:

x = invalid

y = 2

Real cache:

x = 1



Value Prediction Cache

T1

x = 1;

y = 2;

read x;

VPC:

x = 1

y = 2

T2

x = 1;

VPC:

x = 1

Real cache:

x = 1

y = 2

Real cache:

x = 1

Cache miss 

not detected





Algorithm 1: read

d ← heap(v)

if cache(v) ≠ d then

synchronized v

d ← heap(v)

H ← H ∪ (last(v),r)

G ← G ∪ {r}

last(v) ← r

cache(v) ← d

G: set of read actions with cache miss

H: inter thread dependences

r = <tid,read,v,uniqueId>



Algorithm 2: write

synchronized v

heap(v) ← d

if last(v).t ≠ t then

H ← H ∪ (last(v),w)

last(v) ← w

cache(v) ← d

G: set of read actions with cache miss

H: inter thread dependences

w = <t, write, v, uniqueId>



Algorithm 3: lock

acquire(v)

if last(v).t ≠ t then

H ← H ∪ (last(v),l)

last(v) ← w

G: set of read actions with cache miss

H: inter thread dependences

w = <t, acquire, v, uniqueId>



Cache Organization

• Big cache
• Less unnecessary cache misses → smaller log

• Disables the garbage collection mechanism → drains memory

• Small cache
• Unnecessary cache misses

• Optimal cache
• Efficient updates and queries

• Moderate memory consumption

• High cache hit rate





Heuristics to still get SC replay

• Try to schedule read actions first
• If desired value is inconsistent with the one in the 

heap suspend thread

• Immediately after desired value is written resume

• Add sequence number to groups of variables
• Sequence numbers define dependences between 

variables 



Performance



Performance



Conclusion

• CARE records only inter-thread dependencies

• Takes use of cache: cache miss = dependency

• Good performance: small log, low overhead


