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Introduction

● Few extensions to the C programming 
language → “shelters”

● Compiler pass transforms “shelter code” to C 
code with calls to shelter runtime

● Shelter runtime ensures atomicity (and other 
properties) given correct calls to the runtime



  

Shelter code elements

● Shelter type: shelter_t
● Type annotation: sheltered_by( … )
● Atomic block: atomic { … }
● Function annotation: needs_shelters( … )

→ “relatively” small annotation overhead



  

shelter_t type

Normal C type, no special restrictions

shelter_t shelter_variable;

struct some_struct {

shelter_t shelter_field;

int other_struct_field;

};

shelter_t some_function(shelter_t param);



  

sheltered_by type annotation

Annotation for shared objects

shelter_t shelter_variable;

int sheltered_by(shelter_variable) some_int;

struct some_struct {

shelter_t shelter_field;

int sheltered_by(shelter_field) other_struct_field;

};



  

atomic block

atomic {

   /*

guarantees atomic access to sheltered objects

needs correct annotations

open_atomic { … } & force_open_atomic { … } for open nesting

*/

}



  

needs_shelters function annotation

● Required to avoid whole-program analysis
● Somewhat complicated
● Not important for understanding of the idea
● See Appendix



  

Example (from paper)

typedef struct {

   int sheltered_by(s) id;

   float sheltered_by(s) balance;

   shelter_t s;

} account_t;



  

Example (from paper)

needs_shelters(a->s)

void deposit(account_t* a, float d) {

   a->balance += d; // not atomic, see next slide

}

needs_shelters(a->s)

void withdraw(account_t* a, float d) {

   a->balance -= d; // not atomic, see next slide

}



  

Example (from paper)

needs_shelters(to->s, from->s)

void transfer(account_t* to, account_t* from, float amount) {

   atomic {

      // here accesses become atomic

      withdraw(from, amount);

      deposit(to, amount);

   }

}



  

Implementation

● No whole-program analysis required
● Supports explicit external locks

– Through shadow shelters (→ more annotations)

● Supports condition variables (→ more annotations)
● Supports both open- and closed-nesting

– Closed-nesting: Changes become visible at the end of 
outer-most atomic block

– Open-nesting: Changes become visible at the end of each 
nested atomic block resp.



  

Implementation

● Timestamp based (similar to database transactions)
– Global counter → contention → exponential back-off

● Pessimistic: First makes sure it's safe to execute atomic blocks, 
then executes them

● Not Optimistic: Execute code and if a problem is detected roll-back 
changes (roll-back may be expensive or impossible e.g. for IO)

● Must know used shelters before atomic block
– For struct fields program analysis may be imprecise (see appendix)

● Each struct with shelters has its own global shelter which can be used for this case 
→ quite extreme (problematic for the sqlite benchmark)

● Could use more fine-grained shelter hierarchy → might require whole-program 
analysis



  

Formalism

● Paper introduces formalism for shelter semantics
● Operational semantics
● Rather complicated (see appendix & paper)
● Allows to formally establish useful properties 

about shelters
– Deadlock freedom

– Partial atomicity for sheltered objects

– No guarantees about starvation or fairness



  

Benchmarks

● Benchmarked with 13 different programs
● Including

– SQLite database system

– parallel bzip2 (pbzip2)

– n-body simulation (ebarnes)

– oatomic (using open nesting)

● Executed on 2.27GHz Intel Xeon X7560 with four 
processors each with eight cores (total 32 cores) with 
32GB memory without Hyperthreading



  

Benchmark

● Compared against
– explicit locking (reference)

– Autolocker

– Intel C/C++ compiler software transactional memory

– Single global lock

– Shelters implemented using RWLocks



  

Benchmark



  

Questions?



  

Appendix



  

needs_shelters function annotation

● Required if the function is called inside an atomic block
● Must declare which shelters are used inside function
● For calls to other functions, must also declare their 

used shelters
● Can use globals & parameter expressions
● Compiler & runtime give errors if they are missing
● Missing annotations can lead to data-races, but not 

deadlocks



  

needs_shelters function annotation

needs_shelters(shelter_variable)

void some_function() { … }

needs_shelters(arg->shelter_field)

void another_function(struct some_struct arg)

{ … }

● needs_shelters is a var arg function



  

Example (from Paper)

void idTransfer(int toId, int fromId, float a) {

   // this example will require the global account_t shelter

   atomic {

      account_t *to = accountLookup(toId);

      account_t *from = accountLookup(fromId);

      withdraw(from, a);

      deposit(to, a);

   }

}



  

Example (from Paper) 

open_atomic {

   for (t = l->head; t; t = t->next) {

      atomic {

         withdraw(t->from, a);

         deposit(t->to, a);

} } }



  

Formalism: Definitions



  

Formalism: Rules
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