Sherlock: Scalable Deadlock Detection for
Concurrent Programs
Mahdi Eslamimehr, Jens Palsberg

David Wellig
ETH Ziirich

11.03.2015

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Clarification of terms

Types of deadlock-detection techniques:
m static: detection without running the program
m dynamic: gathers information during one or more runs
m hybrid: combination of static and dynamic

Scalable:

m The property of an algorithm of being suitably efficient and
practical when applied to large situations.

Sherlock is a dynamic deadlock-detection algorithm for Java
programs, which works well for large schedules and which
especially determines the schedule to a deadlock.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Types of deadlocks treated by Sherlock

input. ..
T T2
1 : synchronized(A){ 1 : synchronized(B){

2: synchronized(B){} | 2: synchronized(A){}

m synchronized(A){s}: Thread acquires lock of A and executes
statement s.
m In the state (77 > 2, T > 2) we are deadlocked.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Basic idea of Sherlock

Basic structure of the algorithm:

(execute o permute)’ o execute, i€ N.

permute
execute
execute
permute
schedule that
leads to a deadlock
execute

initial schedule

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Execute function

Interface of the execute function:

execute :Program x Schedule x Candidate —
Input x Schedule x Bool & {none}

Suppose we have program p, schedule s and candidate c:
(a, trace, found) = execute(p, s, c).

If found is true, trace is the actual schedule that leads to the
candidate ¢ which then in fact is a deadlock. a is the input to the
program.

execute uses concolic execution, which is an execution that records
constraints.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Simple example for concolic execution

Let y be an input, and s a statement. Consider:
x=06; if (y > 4){s};

How to find an input that leads to s?

First run:
y =0 = (y > 4) prevents executing s = (y > 4) is recorded.

Second run:
y =8 = Success.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Permute function (1)

Interface of the permute function:
permute :Schedule x Candidate — Schedule & {none}
permute permutes the events of schedule 7 = (e, ..., e,), ie.
permute(, c) = (€y(1);- - -, €q(n))s fOra a € Sy,

where S, is the set of all permutations of n elements. Furthermore
o has to satisfy the following constraints

ar N\ Bﬂ A W(\/7E) A 5C.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Permute function (2)

Constraints:
m a,: Happens-before relation.

m 5. Write-read consistency. Read event reads value written by
most recent write event.

m Wy £): Lock-order constraints. (V, E) is the lock-order
graph. Nodes V are events that acquire locks.

m .. Representation of deadlock-candidate c.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

A closer look on Sherlock

(Deadlock set) Sherlock(Program p) {
(Cycle set) candidates = GoodLock(p)
Schedule s, = initialRun(p)

(Deadlock set) dlocks = @

for each Cycle ¢ € candidates do {
boolean found = false
boolean stalled = false
inti=0
Schedule s = so
while (= found) A (= stalled) A (i < 1000) {
case execute(p, s, e) of
(Input x Schedule x boolean) (a, trace, true) : {
dlocks = dlocks U {(c, a, trace)}
found = true

(Input x Schedule x boolean) (a, trace, false) : {
case permute(trace,) of
Schedule s": {s =5}
none : {stalled = true}

none : {stalled = true}
}
i=i+1
1
}

return dioeks

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Example for Sherlock (1)

y = to be determined

T T2

1:x:= 1:x:=2

2 : synchronized(A){ 2 : synchronized(B){

3. if(y > 4){ 3. if(y?+5 < x?){

4: synchronized(B){} | 4: synchronized(A){}
1 1}

We use abbreviations for the events:
ei:(Tlvi)a 1§’§47 ei+4:(T27i)a 1<i<4.

Initial run:
y = 0 = s= <617627e3ae57 €6, e7>

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Example for Sherlock (2)

First iteration of while-loop: Record of (y > 4).
y =5 = trace = (e1, e, €3, €5, €6, €7, €1)

Permute on trace:

s = (es, €6, €7, €1, €2, €3, €4)
Second iteration of while-loop:

trace = (es, €5, €7, €1, €2, €3, €4)

Permute on trace:

s = (es, 6, €1, €, €7, €3, €2)
Third iteration of while-loop:

trace = <e5) €6, €1, €2, €7, €3, €4, 68>

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Experimental results (1)

Static Tybrid Dynamic
benchmarks | Chord | GoodLock | DeadlockFuzzer ConTest Jearder Java HotSpot DCJJ Sherlock
total = new + DCJJ

Sor 1 7 0 0 0 0 0 1 1 0
TSP 1 9 0 U] 0 0 0 1 : 0
Hede 24 23 1 0 0 0 i 20 19 1
Elevator 4 13 0 0 0 1 1 5 4 1
ArrayList 9 11 7 6 2 1 7 9 6 3
TreeSet 8 11 7 5 1 3 & 5 0 5
HashSet 1 10 3 1 0 2 5 5 0 5
Vector 3 14 0 1 0 0 i 4 4 0
RayTracer 1 8 0 1 0 0 i 2 1 1
MolDyn 3 6 1 1 1 1 1 1 0 1
MonteCarlo 2 23 0 1 1 1 i 2 1 1
Derby 5 10 2 0 0 0 2 4 3 1
Colt 6 11 0 U] 0 0 0 3 3 0
Avrora 78 29 4 2 1 2 4 7 3 4
Tomeat 119 411 9 10 3 4 11 8 10 8
Batic 73 33 5 4 1 3 7 10 3 7
Eclipse 89 389 9 8 4 6 13 23 12 11
Fop 15 11 1 1 0 0 2 4 2 2
H2 25 firg 0 1 0 0 i 3 2 1
PMD 20 8 2 2 0 1 3 4 2 2
Sunflow 31 11 1 2 0 2 2 6 1 2
Xalan 42 210 3 4 0 2 4 9 5 4
TOTAL 570 1275 55 50 14 29 75 | 146 86 60

Figure: Numbers of deadlocks detected by technique

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Experimental results (2)

Sherlock
schedule length | total = new + DCIJ

10° — 10° 5 0 5
10% — 104 20 9 11
10* — 10° 39 12 27
10° — 108 40 38 11
105 — 107 24 18 [
107 — 108 0 9 0

146 86 60

Observations:

m Sherlock detects many deadlocks for more than 10° execution

steps.

m Sherlock only missed 15 detections of DCJJ.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Conclusions, Limitations

Conclusion:

m Sherlock finds more deadlocks than any other dynamic
detection technique.

m Thanks to permute Sherlock scales also to long schedules.

Limitation:

m Sherlock up to now only supports synchronized methods and
statements. Wait, notify and notify all are not supported.

m To find deadlock candidates Sherlock relies on GoodLock. If
GoodLock misses a deadlock, so does Sherlock.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Detection for Concurrent Programs

Thank you for your attention.

David Wellig ETH Ziirich

Sherlock: Scalable Deadlock Dete: for Concurrent Programs

