
Sherlock: Scalable Deadlock Detection for
Concurrent Programs

Mahdi Eslamimehr, Jens Palsberg

David Wellig
ETH Zürich

11.03.2015

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Clarification of terms

Types of deadlock-detection techniques:

static: detection without running the program

dynamic: gathers information during one or more runs

hybrid: combination of static and dynamic

Scalable:

The property of an algorithm of being suitably efficient and
practical when applied to large situations.

Sherlock is a dynamic deadlock-detection algorithm for Java
programs, which works well for large schedules and which
especially determines the schedule to a deadlock.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Types of deadlocks treated by Sherlock

input. . .

T1 T2

1 : synchronized(A){ 1 : synchronized(B){
2 : synchronized(B){} 2 : synchronized(A){}

. . .}} . . .}}

synchronized(A){s}: Thread acquires lock of A and executes
statement s.

In the state (T1 B 2,T2 B 2) we are deadlocked.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Basic idea of Sherlock

Basic structure of the algorithm:

(execute ◦ permute)i ◦ execute, i ∈ N.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Execute function

Interface of the execute function:

execute :Program × Schedule × Candidate →
Input × Schedule × Bool ⊕ {none}

Suppose we have program p, schedule s and candidate c :

(a, trace, found) = execute(p, s, c).

If found is true, trace is the actual schedule that leads to the
candidate c which then in fact is a deadlock. a is the input to the
program.
execute uses concolic execution, which is an execution that records
constraints.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Simple example for concolic execution

Let y be an input, and s a statement. Consider:

x = 6; if (y > 4){s};

How to find an input that leads to s?

First run:

y = 0 ⇒ (y > 4) prevents executing s ⇒ (y > 4) is recorded.

Second run:
y = 8 ⇒ Success.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Permute function (1)

Interface of the permute function:

permute :Schedule × Candidate → Schedule ⊕ {none}

permute permutes the events of schedule π = 〈e1, . . . , en〉, ie.

permute(π, c) = 〈eσ(1), . . . , eσ(n)〉, for a σ ∈ Sn,

where Sn is the set of all permutations of n elements. Furthermore
σ has to satisfy the following constraints

aπ ∧ βπ ∧Ψ(V ,E) ∧ δc .

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Permute function (2)

Constraints:

aπ: Happens-before relation.

βπ: Write-read consistency. Read event reads value written by
most recent write event.

Ψ(V ,E): Lock-order constraints. (V ,E ) is the lock-order
graph. Nodes V are events that acquire locks.

δc : Representation of deadlock-candidate c.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



A closer look on Sherlock

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Example for Sherlock (1)

y = to be determined

T1 T2

1 : x := 6 1 : x := 2
2 : synchronized(A){ 2 : synchronized(B){
3 : if(y > 4){ 3 : if(y2 + 5 < x2){
4 : synchronized(B){} 4 : synchronized(A){}

}} }}

We use abbreviations for the events:

ei = (T1, i), 1 ≤ i ≤ 4, ei+4 = (T2, i), 1 ≤ i ≤ 4.

Initial run:
y = 0 ⇒ s = 〈e1, e2, e3, e5, e6, e7〉.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Example for Sherlock (2)

First iteration of while-loop: Record of (y > 4).

y = 5 ⇒ trace = 〈e1, e2, e3, e5, e6, e7, e4〉

Permute on trace:

s = 〈e5, e6, e7, e1, e2, e3, e4〉

Second iteration of while-loop:

trace = 〈e5, e6, e7, e1, e2, e3, e4〉

Permute on trace:

s = 〈e5, e6, e1, e2, e7, e3, e4〉

Third iteration of while-loop:

trace = 〈e5, e6, e1, e2, e7, e3, e4, e8〉

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Experimental results (1)

Figure: Numbers of deadlocks detected by technique

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Experimental results (2)

Observations:

Sherlock detects many deadlocks for more than 106 execution
steps.

Sherlock only missed 15 detections of DCJJ.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Conclusions, Limitations

Conclusion:

Sherlock finds more deadlocks than any other dynamic
detection technique.

Thanks to permute Sherlock scales also to long schedules.

Limitation:

Sherlock up to now only supports synchronized methods and
statements. Wait, notify and notify all are not supported.

To find deadlock candidates Sherlock relies on GoodLock. If
GoodLock misses a deadlock, so does Sherlock.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs



Thank you for your attention.

David Wellig ETH Zürich

Sherlock: Scalable Deadlock Detection for Concurrent Programs


