MagicFuzzer: Scalable Deadlock
Detection for Large-Scale
Applications

Yan Cai, W.K. Chan

Introduction

e Automatic recognition of potential deadlocks
* Resource-deadlocks (non-communication)
* Dynamic method: Runs program and creates log at each critical event

* Largescale
» Applicable for Firefox, Thunderbird...

Introduction: Lock dependency

* Dependency relation D: set of lock dependencies

* Lock dependency < t,m,L >
* Thread t
* Lockm
* Lockset L
* t holds all locks of L whilst acquiring m

* Chain of lock dependencies< t;,my, L1 > ... < t;, my, L; > such
that every next thread holds a lock the previous tries to claim

* Deadlock: Cyclic lock dependency chain

Introduction: Lock dependency graph

* Depicts waits-for dependencies ¢ acquire(m,); acquire(m,);
* Node: lock
* Edge: Waits-for @ @

* Deadlock:

m) ()

Related work

e {GoodLock Multicore SDK

* Direct checking on lock order * Constructs a location based lock
graph order graph

Basic algorithm

e Generation of Execution Trace
* Magiclock
* Deadlock Confirmation & MagicScheduler

Execution Trace

* Create a log of an execution:

* For every thread creation, create a new lockset L;

 Whenever acquire occurs
e append < t,m,L; >
¢ Li = Li U m

* Whenever release occurs
*Li=L;\m

Magiclock

* Uses the log and makes a lock
dependency graph from the
dependencies

e How can we reduce the size of
the graph?

Magiclock

* Only cycles deduct a possible
deadlock

e Overfluent nodes:
* Nodes with no edges
* Nodes that only have outgoing or
ingoing edges
* Nodes that would be one of the

above but are connected to
existing ones of the above kind.

Magiclock: Categorization

* Independent-set: In- and outdegree equals O

* Intermediate-set: In- or outdegree equals O

* Inner-set: L only contains members of independent / intermediate set
* All others: Cyclic group; subject for possible deadlocks

Deadlock confirmation

* Given detected cycle m; ...my
* Gather relevant dependencies < t,m;, L >

» Use DFS to search a cyclic dependency chain such that there is a
deadlock

Deadlock confirmation: DFS

DFS(threadID, chain)
For each ID from threadID + 1
if(isTraversed(threadID)) continue;
for each dependency d
if(chain + d forms a cyclic chain) report;
DFS(threadID, chain + d);
endfor
endfor

MagicScheduler

* Adapts object abstraction from DeadlockFuzzer
 Random scheduler, randomly selecting threads to advance

* At acquire of relevant threads of relevant locks: check for deadlock,
pause the thread

* Thrashing: If all threads get put on hold unfavorably, thrashing may
happen

* If thrashing happens, a random thread is put out of sleep

Comparison

e {GoodLock Multicore SDK

* Direct checking on lock order * Constructs a location based lock
graph order graph

Experiment

* Test of MagicFuzzer compared to other algorithms

e Ubuntu Linux system

* > meaning that the system crashed at the latest measure

Benchmark Memory(MB) Time(s) # of cycles # of real
iGoodlock | MSDK | Magiclock | iGoodlock | MSDK | Magiclock | iGoodlock | MSDK | Magiclock | deadlocks

SQLite 1.OSMB| 1.05MB| 1.05MB 0.002s| 0.003s 0.002s 1 1 1 1
MySQL =2 8GB 1.15SMB| 1.05MB >2mSs | 6m38s 1.73s >] 1 1 1
Chromium =2 8GB | =48 2MB 80IMB| =>1h47m >1h 1m42s ND ND 3 UKN
Firefox =28GB | 12241MB| 4.14MB| >10m40s| 7.43s 3.06s ND 0 0 0
OpenOffice | 245.20MB | =48 4MB 8.01MB 1h46m >1h 0.67s 0 ND 0 0
Thunderbird [298.83MB | 40.09MB | 4.15MB loml3s| 4.75s 1.18s 0 0 0 0

