
MagicFuzzer: Scalable Deadlock
Detection for Large-Scale

Applications
Yan Cai, W.K. Chan

Introduction

• Automatic recognition of potential deadlocks

• Resource-deadlocks (non-communication)

• Dynamic method: Runs program and creates log at each critical event

• Largescale
• Applicable for Firefox, Thunderbird…

Introduction: Lock dependency

• Dependency relation D: set of lock dependencies

• Lock dependency < 𝑡,𝑚, 𝐿 >
• Thread 𝑡

• Lock 𝑚

• Lockset 𝐿

• 𝑡 holds all locks of 𝐿 whilst acquiring𝑚

• Chain of lock dependencies< 𝑡1, 𝑚1, 𝐿1 > … < 𝑡𝑘 , 𝑚𝑘 , 𝐿𝑘 > such
that every next thread holds a lock the previous tries to claim

• Deadlock: Cyclic lock dependency chain

Introduction: Lock dependency graph

• Depicts waits-for dependencies

• Node: lock

• Edge: Waits-for

• 𝑎𝑐𝑞𝑢𝑖𝑟𝑒 𝑚1 ; 𝑎𝑐𝑞𝑢𝑖𝑟𝑒 𝑚2 ;

• Deadlock:

𝑚1 𝑚2

𝑚1 𝑚2

Related work

• iGoodLock

• Direct checking on lock order
graph

• Multicore SDK

• Constructs a location based lock
order graph

Basic algorithm

• Generation of Execution Trace

• Magiclock

• Deadlock Confirmation & MagicScheduler

Execution Trace

• Create a log of an execution:

• For every thread creation, create a new lockset 𝐿𝑖
• Whenever acquire occurs

• append < 𝑡,𝑚, 𝐿𝑖 >

• 𝐿𝑖 = 𝐿𝑖 𝑚

• Whenever release occurs
• 𝐿𝑖 = 𝐿𝑖 \ 𝑚

Magiclock

• Uses the log and makes a lock
dependency graph from the
dependencies

• How can we reduce the size of
the graph?

Magiclock

• Only cycles deduct a possible
deadlock

• Overfluent nodes:
• Nodes with no edges

• Nodes that only have outgoing or
ingoing edges

• Nodes that would be one of the
above but are connected to
existing ones of the above kind.

Magiclock: Categorization

• Independent-set: In- and outdegree equals 0

• Intermediate-set: In- or outdegree equals 0

• Inner-set: L only contains members of independent / intermediate set

• All others: Cyclic group; subject for possible deadlocks

Deadlock confirmation

• Given detected cycle𝑚1…𝑚𝑘
• Gather relevant dependencies < 𝑡,𝑚𝑖 , 𝐿 >

• Use DFS to search a cyclic dependency chain such that there is a
deadlock

Deadlock confirmation: DFS

DFS(threadID, chain)

For each ID from threadID + 1

if(isTraversed(threadID)) continue;

for each dependency d

if(chain + d forms a cyclic chain) report;

DFS(threadID, chain + d);

endfor

endfor

MagicScheduler

• Adapts object abstraction from DeadlockFuzzer

• Random scheduler, randomly selecting threads to advance

• At acquire of relevant threads of relevant locks: check for deadlock,
pause the thread

• Thrashing: If all threads get put on hold unfavorably, thrashing may
happen

• If thrashing happens, a random thread is put out of sleep

Comparison

• iGoodLock

• Direct checking on lock order
graph

• Multicore SDK

• Constructs a location based lock
order graph

Experiment

• Test of MagicFuzzer compared to other algorithms

• Ubuntu Linux system

• > meaning that the system crashed at the latest measure

