
Automated Concurrency-Bug 

Fixing
Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, Shan Lu

Concepts of Concurrent Computation seminar



Motivation

Multi-core era

 Bug detectors are already proposed

 Fixing bugs is challenging













Enforcing order relationship

 A instruction

 Signal thread

 S-create threads

 B instruction

 Wait thread

 W-create thread

 Call stack: 𝑓0, 𝑖0 → 𝑓1, 𝑖1 → ⋯ → (𝑓𝑛, 𝑖𝑛)



allA-B order

 locate places to insert signal operations in signal threads, 

 locate places to insert signal operations in s-create threads,

 locate places to insert wait operations, and 

 implement the signal and wait operations



Finding Signal Locations in Signal 

Threads

 Analyse Control Flow Graph (CFG) of 𝑓0

 Insert signal operation on CFG edge that goes from reaching to non-

reaching node

 Continue down the call stack

 Can 𝑖0 call 𝑓1 multiple times?



allA-B order

 locate places to insert signal operations in signal threads, 

 locate places to insert signal operations in s-create threads,

 locate places to insert wait operations, and 

 implement the signal and wait operations



Implementing Wait and Signal 

Operations

 Track the number of threads that will perform signal operation

 Track how many threads have signaled already

 Allow a wait thread to proceed once all signals are done



firstA-B order

 Basic design

Signal right after A instruction

Wait right before B instruction

 Safety-net design

When program can no longer execute A, wait thread will continue

 Inserts signal operations using allA-B algorithm





Correctness Testing

 Deadlock discovered by static analysis

 Failure in RTest

 Failure in GTest

 Timeout in RTest

 Failures of related patches



Patch selection 

 Performance impact

 Number of synchronization operations

 Patch that can be merged





Patch merging guidelines 

 The merged patch must have statically and dynamically fewer 

signal and wait operations than the unmerged patches. 

 Each individual bug must still be fixed. 

 Merging must not add new deadlocks.

 Merging should not cause significant performance loss.



Overall results



Limitations of CFix

 Only two different orderings

 Bugs including shared loops

 Some special scenarios…



Conclusion 

 Different bug detectors

 Among first tools of this category



Thank you!

Questions?


