Automated Concurrency-Bug Fixing

Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, Shan Lu Concepts of Concurrent Computation seminar

Motivation

- Multi-core era
- Bug detectors are already proposed
- Fixing bugs is challenging

Enforcing order relationship

- A instruction
- Signal thread
- S-create threads
- B instruction
- Wait thread
- W-create thread
- Call stack: $(f_0, i_0) \rightarrow (f_1, i_1) \rightarrow \cdots \rightarrow (f_n, i_n)$

allA-B order

- locate places to insert signal operations in signal threads,
- locate places to insert signal operations in s-create threads,
- locate places to insert wait operations, and
- implement the signal and wait operations

Finding Signal Locations in Signal Threads

- lacktriangle Analyse Control Flow Graph (CFG) of f_0
- Insert signal operation on CFG edge that goes from reaching to nonreaching node
- Continue down the call stack
- \blacksquare Can i_0 call f_1 multiple times?

allA-B order

- locate places to insert signal operations in signal threads,
- locate places to insert signal operations in s-create threads,
- locate places to insert wait operations, and
- implement the signal and wait operations

Implementing Wait and Signal Operations

- Track the number of threads that will perform signal operation
- Track how many threads have signaled already
- Allow a wait thread to proceed once all signals are done

firstA-B order

- Basic design
 - Signal right after A instruction
 - Wait right before B instruction
- Safety-net design
 - When program can no longer execute A, wait thread will continue
 - Inserts signal operations using allA-B algorithm

Correctness Testing

- Deadlock discovered by static analysis
- Failure in RTest
- Failure in GTest
- Timeout in RTest
- Failures of related patches

Patch selection

- Performance impact
- Number of synchronization operations
- Patch that can be merged

Patch merging guidelines

- The merged patch must have statically and dynamically fewer signal and wait operations than the unmerged patches.
- Each individual bug must still be fixed.
- Merging must not add new deadlocks.
- Merging should not cause significant performance loss.

Overall results

	Nun	ber of	Bug Re	ports	Overall Patch Quality						Failure Rates		Overhead		# of CFix
ID	AV	OV	RA	DU	AV	OV	RA	DU	CFix	Manual	Original	CFix	CFix	Manual	Sync Ops
OB1	2	5 _a	4		✓	✓	✓		✓	✓	43%	0%	-0.3%	1.6%	5
OB2		1_a				✓			✓	✓	65%	0%	-0.1%	3.6%	7
OB3	7	4_f	10	4_L	✓	✓	✓	✓	✓	✓	100%	0%	0.2%	0.0%	5
OB4	1	1_f	2		✓	✓	✓		✓		97%	0%	0.5%		2
OB5	1		1		✓		✓		✓	✓	64%	0%	0.0%	0.0%	2
OB6	1	1_f	2	1_L	✓	✓	✓	✓	✓	✓	93%	0%	0.3%	-0.3%	2
OB7		1_f				✓			✓	✓	97%	0%	0.2%		3
AB1	6		6		✓		✓		✓	✓	52%	0%	-0.9%	-0.4%	3
AB2	1		2	1_R	✓		✓	✓	✓	✓	39%	0%	0.7%	0.5%	5
AB3	2		4	2_R	✓		✓	-	✓	-	53%	0%	-0.0%	1.0%	9
AB4	1		2		✓		✓		✓	-	55%	0%	-0.5%	0.0%	3
AB5	4		5	1_R	\checkmark		✓	✓	✓	✓	68%	0%	-0.2%	0.4%	2
AB6	1		2	1_R	✓		✓	✓	✓	✓	42%	0%	0.7%	0.5%	5

Limitations of CFix

- Only two different orderings
- Bugs including shared loops
- Some special scenarios...

Conclusion

- Different bug detectors
- Among first tools of this category

Thank you!

Questions?