Automated Concurrency-Bug
FIXING

Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, Shan Lu

Concepts of Concurrent Computation seminar

Motivation

» Multi-core era
» Bug detectors are already proposed
» Fixing bugs is challenging

Bug
Understanding

Fix- S’rro’regy
Design

Patch Tes’rlng
& Selection

Patch
Merging

=
KD
[%“nis:sg:zi“;:“}
E=3
=3

Bug
Understanding

Fix-Strategy
Design

Synchronlzo’rlon
Enforcement

0
3
{ pafch Testing J
=3

& Selection

Patch
Merging

Bug
Understanding

Fix-Strategy
Design

{SYHChI’OhIZOTIOh

Enforcement

\ 4

Patch Testing
& Selection

Patch
Merging

(a) Atomicity (b) Order Violation (c) Race (d) Def-Use

Violation allA-B firstA—-B Remote-1s-Bad Local-1s-Bad
Wh @
Reports: bgld ':g.fi We
R
Wh
Strategy (1): We
R
ateov (2): r 1190 | [galZ
Strategy (2)) N/A N/A X |L N/A
|
Strategy (3): E: rya N/A N/A N/A N/A
I

Bug
Understanding

Fix-Strategy
Design

Synchronization
Enforcement

Patch Testing
& Selection

Patch
Merging

Enforcing order relationship

» A instruction

= Signal thread

» S-create threads
= B insfruction

= Wait thread

» \W-creafe thread

» Callstack: (fy, i) = (f, i) = - = (Fp in)

allA-B order

» |ocate places to insert signal operations in signal threads,

®» |ocate places to insert signal operations in s-create threads,

» |ocate places to insert wait operations, and

» mplement the signal and wait operations

Finding Signal Locations in Signal
Threads

Analyse Conftrol Flow Graph (CFG) of f,

Insert signal operation on CFG edge that goes from reaching to non-
reaching node

Contfinue down the call stack

Can iy call f; multiple times?

allA-B order

» |ocate places to insert signal operations in signal threads,

®» |ocate places to insert signal operations in s-create threads,

» |ocate places to insert wait operations, and

» mplement the signal and wait operations

Implementing Wait and Signal
Operations

» Track the number of threads that will perform signal operation

» Track how many threads have signaled already

» Allow a wait thread to proceed once all signals are done

firstA-B order

= Basic design
» Signal right after A instruction

= Wait right before B instruction

» Safety-net design
» \When program can no longer execute A, wait thread will continue

®» [nserts signal operations using allA-B algorithm

Bug
Understanding

Fix- S’rro’regy
Design

{SYHChI’OhIZOTIOh

Enforcement

Patch Testing
& Selection

Patch
Merging

Correctness Testing

» Deadlock discovered by static analysis
» Fqilure in RTest
» Fqgilure in GTest

» Timeout in RTest

» Fqilures of related patches

Patch selection

®» Performance impact

» Number of synchronization operations

» Pafch that can be merged

Bug
Understanding

Fix- S’rro’regy
Design

=
0
LSynchronlzc’rlon }
3

Enforcement

Patch Tes’rlng
& Selec’non

Patch
Merging

Patch merging guidelines

The merged patch must have statically and dynamically fewer
signal and wait operations than the unmerged patches.

Each individual bug must still be fixed.

Merging must not add new deadlocks.

Merging should not cause significant performance loss.

Overall results

Number of Bug Reports Overall Patch Quality Failure Rates Overhead 4 of CFix
ID AV OV RA DU AV OV RA DU CFix Manual Original CFix CFix Manual Sync Ops
OBl1 2 Sa 4 v v v v v 43% 0% -0.3% 1.6% 5
OB2 14 v v v 635% 0% -0.1% 3.6% 7
OB3] 4¢ 10 4;, v v v v v v 100% 0% 0.2% 0.0% 5
OB4 I ¢ 2 v v v v 7% 0% 0.5% 2
OB5 I 1 v v v v 645 0% 0.0% 0.0% 2
OB6 I I¢ 2 1z v v v v v v 93% 0% 0.3% -0.3% 2
OB7 ¢ v v v 7% 0% 0.2% 3
ABI 6 6 v v v v 52% 0% -0.9% -0.4% 3
AB2 I 2 L v v v v v 39% 0% 0.7% 0.5% 5
AB3 2 4 2p v v - v - 33% 0% -0.0% 1.0% 9
AB4 I 2 v v v - 35% 0% -0.5% 0.0% 3
AB5 4 5 I v v v v v 68% 0% -0.2% 0.4% 2
AB6 I 2 g v v v v v 42% 0% 0.7% 0.5% 5

Limitations of CFix

= Only two different orderings

» Bugs including shared loops

®» Some special scenarios...

Conclusion

» Different bug detectors

®» Among first tools of this category

Thank youl!

Questions?e

