
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

Solution 8: Recursion

ETH Zurich

1 An infectious task

1. Correct. However, this version will call set flu twice on all reachable persons except the
initial one. On the initial person set flu will be called once in case of a non-circular
structure and three times in case of a circular structure.

2. Incorrect. This version results in endless recursion if the coworker structure is cyclic. The
main cause is that the coworker does not get infected before the recursive call is made, so
with a cyclic structure nobody will ever be infected to terminate the recursion.

3. Incorrect. This version results in an endless loop if the structure is cyclic. The main
problem is with the loop’s exit condition that does not include the case when q is already
infected.

4. Correct. This version works and uses tail recursion. It will always give the flu to p first,
and then call infect on his/her coworker. The recursion ends when either there is no
coworker, or the coworker is already infected. Without the second condition the recursion
is endless if the coworker structure is cyclic.

Multiple coworkers

class
PERSON

create
make

feature −− Initialization

make (a name: STRING)
−− Create a person named ‘a name’.

require
a name valid: a name /= Void and then not a name.is empty

do
name := a name
create {V ARRAYED LIST [PERSON]} coworkers

ensure
name set: name = a name
no coworkers: coworkers.is empty

end

feature −− Access

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

name: STRING
−− Name.

coworkers: V LIST [PERSON]
−− List of coworkers.

has flu: BOOLEAN
−− Does the person have flu?

feature −− Element change

add coworker (p: PERSON)
−− Add ‘p’ to ‘coworkers’.

require
p exists: p /= Void
p different: p /= Current
not has p: not coworkers.has (p)

do
coworkers.extend back (p)

ensure
coworker set: coworkers.has (p)

end

set flu
−− Set ‘has flu’ to True.

do
has flu := True

ensure
has flu: has flu

end

invariant
name valid: name /= Void and then not name.is empty
coworkers exists: coworkers /= Void
all coworkers exist: not coworkers.has (Void)

end

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
p.set flu
across

p.coworkers as c
loop

if not c.item.has flu then
infect (c.item)

end
end

end

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

The coworkers structure is a directed graph. The master solution traverses this graph using
depth-first search.

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

2 Short trips

Listing 1: Class SHORT TRIPS

note
description: ”Short trips.”

class
SHORT TRIPS

inherit
ZURICH OBJECTS

feature −− Explore Zurich

highlight short distance (s: STATION)
−− Highight stations reachable from ‘s’ within 2 minutes.

require
station exists: s /= Void

do
highlight reachable (s, 2 ∗ 60)

end

feature {NONE} −− Implementation

highlight reachable (s: STATION; t: REAL 64)
−− Highight stations reachable from ‘s’ within ‘t’ seconds.

require
station exists: s /= Void

local
line: LINE
next: STATION

do
if t >= 0.0 then

Zurich map.station view (s).highlight
across

s.lines as li
loop

line := li.item
next := line.next station (s, line.north terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end
next := line.next station (s, line.south terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end

end
end

end

end

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

3 N Queens

Listing 2: Class PUZZLE

note
description: ”N−queens puzzle.”

class
PUZZLE

feature −− Access

size: INTEGER
−− Size of the board.

solutions: LIST [SOLUTION]
−− All solutions found by the last call to ‘solve’.

feature −− Basic operations

solve (n: INTEGER)
−− Solve the puzzle for ‘n’ queens
−− and store all solutions in ‘solutions’.

require
n positive: n > 0

do
size := n
create {LINKED LIST [SOLUTION]} solutions.make
complete (create {SOLUTION}.make empty)

ensure
solutions exists: solutions /= Void
complete solutions: across solutions as s all s.item.row count = n end

end

feature {NONE} −− Implementation

complete (partial: SOLUTION)
−− Find all complete solutions that extend the partial solution ‘partial’
−− and add them to ‘solutions’.

require
partial exists: partial /= Void

local
c: INTEGER

do
if partial.row count = size then

solutions.extend (partial)
else
from

c := 1
until

c > size
loop

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

if not under attack (partial, c) then
complete (partial.extended with (c))

end
c := c + 1

end
end

end

under attack (partial: SOLUTION; c: INTEGER): BOOLEAN
−− Is column ‘c’ of the current row under attack
−− by any queen already placed in partial solution ‘partial’?

require
partial exists: partial /= Void
column positive: c > 0

local
current row, row: INTEGER

do
current row := partial.row count + 1
from

row := 1
until
Result or row > partial.row count

loop
Result := attack each other (row, partial.column at (row), current row, c)
row := row + 1

end
end

attack each other (row1, col1, row2, col2: INTEGER): BOOLEAN
−− Do queens in positions (‘row1’, ‘col1’) and (‘row2’, ‘col2’) attack each other?

do
Result := row1 = row2 or

col1 = col2 or
(row1 − row2).abs = (col1 − col2).abs

end

end

4 MOOC: Design by Contract, recursion

The order in which the questions and the answers appear here in the solution may vary because
they are randomly shuffled at each attempt.

Design by Contract: preconditions

• In class KNIGHT you have feature set reputation (rep: INTEGER). What precondition
would you write for it? rep >= −5 and rep <= 5

• In class KNIGHT you have feature attack monster (mon: MONSTER; wep: WEAPON).
What precondition would you write for it? wep /= Void and mon /= Void and then
wep.is ready

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

• In class MONSTER you have feature scan direction (dir: DIRECTION). What precondi-
tion would you write for it? No explicit precondition is needed.

• n class WEAPON you have feature set ready (wep ready: BOOLEAN). What precondition
would you write for it? No precondition is needed here.

• Suppose that in class MONSTER, feature attack, you want to add the expression
is knight close to the existing precondition is angry. The true sentence is: The compound
precondition is angry and is knight close is a stronger precondition than is angry.

• Suppose you know that a knight can only fight in battle if his or her hit points are greater
than 10. Which is a reasonable precondition for BOOLEAN feature is fit for battle in class
KNIGHT? No precondition is needed here.

Design by Contract: postconditions

• In class KNIGHT you have feature set reputation (rep: INTEGER). What postcondition
would you write for it? reputation = rep

• In class KNIGHT you have feature attack monster (mon: MONSTER; wep: WEAPON).
What postcondition would you write for it? old mon.hit points >= mon.hit points and
not wep.is ready

• In class MONSTER you have feature scan direction (dir: DIRECTION). What postcon-
dition would you write for it? is knight found or is scanning complete.

• In class WEAPON you have feature set ready (wep ready: BOOLEAN). What postcondi-
tion would you write for it? is ready = wep ready.

• Suppose that in class KNIGHT, feature attack, you want to add to the existing post-
condition old mon.hit points >= mon.hit points and not wep is ready the new clause:
reputation = old reputation + 1 or reputation = 5. The true sentence is: The com-
pound postcondition: old mon.hit points >= mon.hit points and not wep is ready and (
reputation = old reputation + 1 or reputation = 5) is a stronger postcondition than the
pre-existing postcondition.

• Suppose you know that a knight can only fight in battle if his or her hit points are greater
than 10. Which is a reasonable postcondition for BOOLEAN feature is fit for battle in
class KNIGHT? Result = (hit points > 10).

Design by Contract: class invariants

• Given what you know about class KNIGHT, what invariant would you write? reputation
>= −5 and reputation <= 5 and hit points >= 0

• Given what you know about class MONSTER, what invariant would you write? hit points
>= 0

• Given what you know about class WEAPON, what invariant would you write? is magic
implies is ready and damage >= 1.

• Given what you know about class DIRECTION, what invariant would you write?
internal direction = 1 or internal direction = 2 or internal direction = 3 or internal direction
= 4.

7

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

Design by Contract: contracts and inheritance

• Given what you know about class KNIGHT MAGE, which precondition clause would
you write for feature attack monster (mon: MONSTER; wep: WEAPON)? require else
mana > 0

• Given what you know about class KNIGHT MAGE, which postcondition clause would
you write for feature attack monster (mon: MONSTER; wep: WEAPON)? ensure then
mana <= old mana

• Given what you know about class KNIGHT MAGE, which class invariant would you write
for it? mana >= 0.

• Given what you know about class GOBLIN, which precondition would you write for fea-
ture attack with weapon (kni: KNIGHT; wep: WEAPON)? require last knight found =
kni and is angry and wep.is ready .

• Given what you know about class GOBLIN, which postcondition would you write for
feature attack with weapon (kni: KNIGHT; wep: WEAPON)? ensure is angry.

• Given what you know about class GOBLIN, which class invariant would you write for it?
No invariant clause is needed.

Design by Contract: putting it all together

• Assume a class FILTER receiving input data from a class INPUT HANDLER that in turn
is used to validate user input. The following statements are true: To check for user input
correctness, you should not be using preconditions in class INPUT HANDLER, but use if
statements instead; To check for user input correctness, you should be using preconditions
in class FILTER instead of if statements.

• Assume that the correct precondition for a feature f (s: STRING) is: pre: s /= Void and
then s = ”test” Consider now the following precondition: pre2: s /= Void and then
not s.is empty The following statements are true: pre2 is an over-approximation of pre;
pre2 is complete and unsound.

• Assume that the correct precondition for a feature f (s: STRING) is: pre: s /= Void
and then not s.is empty Consider now the following precondition: pre2: s /= Void and
then s = ”test” The following statements are true: pre2 is an under-approximation of

pre; pre2 is incomplete and sound.

• Assume that the correct postcondition for a feature f is: post: s /= Void and then not
s.is empty Where s: STRING is an attribute. Consider now the following postcondition:
post2: s /= Void and then s = ”test”. The following statements are true: post2 is an
under-approximation of pre; post2 is too strong; post2 is sound but incomplete.

• Assume that the correct postcondition for a feature f is: post: s /= Void and then s
= ”test” Where s: STRING is an attribute. Consider now the following postcondition:
post2: s /= Void and then not s.is empty The following statements are true: post2 is an
over-approximation of post; post2 is complete and unsound; post2 is too weak.

Recursion

• The correct way to complete the code of the routine countdown is the following:

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

countdown (n: INTEGER)
−− Count down from n to 0.

do
if n >= 0 then

print (n.out)
countdown (n−1)

else
−−nothing here

end
end

• The following routine, when called with n having value 4, keeps printing consecutive
numbers starting from 4, and goes into an infinite loop:

countdown (n: INTEGER)
do

if n > 0 then
print (n.out)
countdown (n+1)

else
print (”Done”)

end
end

• The following routine, when called with n having value 4, prints “4321Done”:

countdown (n: INTEGER)
do

if n > 0 then
print (n.out)
countdown (n−1)

else
print (”Done”)

end
end

• If a routine r calls another routine s, which calls another routine t, which finally calls
routine s, then routine s is recursive (indirect recursion) and routine t is recursive (indirect
recursion).

Programming exercise: recursive algorithm for gcd

Listing 3: Class RECURSIVE GCD

note
description: ”Encapsulates a recursive algorithm for computing the gcd of two

positive integers.”
author: ”mp”
date: ”$Date$”
revision: ”$Revision$”

class
RECURSIVE GCD

9

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

feature −− Basic operations

gcd (a, b: INTEGER): INTEGER
−− Greater common divisor between a and b.

require
a positive: a > 0
b positive: b > 0

do
−− This solution is from Dijkstra.
−− It is based on the observation that if a > b,
−− then gcd (a,b) = gcd (a−b,b)
if a = b then

Result := a
else if a > b then

Result := gcd (a−b, b)
else

Result := gcd (a, b−a)
end

end
ensure

result positive: Result > 0
end

end

10

	An infectious task
	Short trips
	N Queens
	MOOC: Design by Contract, recursion

