Chair of Software En

gineerin

Automatic Verification
of Computer Programs

these slides contain advanced
material and are optional

What is verification)

Check correctness of the implementation
given the specification

Static verification
— Check correctness without executing the program
— E.g. static type systems, theorem provers

Dynamic verification
— Check correctness by executing the program
— E.g. unit tests, automatic testing

Automatic verification
— Push-button verification

Overview ()

Dynamic
— Verification
Specification & .
. Fault Correction
Implementation
Static
Verification

* Verification is just one part of the process
e All parts can (in theory) be automated

Specification — Verification — Correction

How to get the specification ()

* Need machine-readable specification for
automatic verification (not just comments)

e Different variants:

— Eiffel‘s ,,Design by Contract”
e Built-in contracts

— .Net 4.0 ,Code Contracts”
* Contracts implemented as a library

— JML ,Java Modeling Language”

 Dialect of Java featuring contracts as special comments

— D, Contracts”
e Evolved from C++, built-in contracts

Specification — Verification — Correction

Contracts in different languages (©

deposit (amount: INTEGER) public void deposit(int amount)
require {
amount >= © Contract.Requires(amount >= ©);
do Contract.Ensures(balance ==
balance := balance + amount Contract.0ldValue<int>(balance)
ensure + amount);
balance = old balance + amount balance += amount;
end Eiffel } CodeContracts
/*@ function deposit(int amount)
requires amount >= 0; __in { assert(amount »>= 0);
ensures int oldb = balance; }
balance == \old(balance)+amount | _out {
@*/ assert(bal == oldb + amount); }
public void deposit(int amount) { __body {
balance += amount balance += amount
} IML } D

Specification — Verification — Correction

Writing full specifications)

* Writing expressive specification is difficult
* Specifying full effect of routines

put (v: G; i: INTEGER)
require lower <= i and i <= upper
ensure
item (1) = v
across lower |..| upper as j all
j /= 1 implies item (j) = old item (j)
end old not allowed in

modifies area S— i
_ modifies not across expression

expressible in Eiffel

— Describing what changes
— Describing what does not change (frame condition)

Specification — Verification — Correction

MML and EiffelBase2

e Model-based contracts use
mathematical notions for
expressing full specifications

note
model: map
class
V_ARRAY [G]
end

map: MML_MAP [INTEGER, G]
-- Map of keys to values.
note
status: specification
do
create Result
across Current as it loop
Result :=
Result.updated (it.key, it.item)
end
end

put (v: G; i: INTEGER)
-- Replace value at "1i'.

note
modify: map
require
has_index (i)
do
at (i).put (v)
ensure
map |=| old map.updated (i, V)
end

Specification — Verification — Correction

Contract inference ()

* Generate contracts based on implementation
* Dynamic contract inference

— Infer contracts based on program runs

e Static contract inference

— Infer contracts without running the program

Specification — Verification — Correction

Dynamic contract inference ()

* Location invariant — a property that always
holds at a given point in the program

_ . o
X_ 04[x=0]
 Dynamic invariant inference — detecting

location invariants from values observed
during execution

* For pre- and postcondition inference, select
routine entry and exit as program points

Specification — Verification — Correction

DAIKON example “

* Uses templates for inferred contracts, e.g.
X = const X >= const X =Yy

* Program point: ACCOUNT.deposit: :ENTER
e Variables of interest: balance, amount

* Invariants: Samples
——badeeE=""0 balance © amount 10
balance >= @ balance 1@ amount 20
—emormt=—16 balance 30 amount 1
amount >= 1
= on

Specification — Verification — Correction 0

Static contract inference ()

* Infer precondition from postcondition/body
— Weakest precondition calculus

* Infer loop invariants from postcondition
— Generate mutations from postcondition

bubble sort (a: ARRAY [T]) || from i := n until i =1 Static analysis
require invariant of program
= o _— I
a.count > 0 1<=1<=n

Mutation from
ensure

sorted (a)
permutation (a, old a)

sorted (a[i+l..n]) —
permutation (a, old a) pos Coln ition

loop Directly from
-- move the largest eleme postcondition

-- in 1..1 to position i
end

Specification — Verification — Correction

Dynamic verification)

* Check that program satisfies its specification
by executing the program

e Manual

— Write unit tests (xUnit framework)

— Execute program and click around
* Automatic

— Random testing

Specification — Verification — Correction

Automatic testing with contracts ()

* Select routine under test
* Precondition used for input validation
— Test is valid if it passes precondition

e Postcondition used as test oracle

— Test is successful if it passes postcondition

Specification — Verification — Correction .

Automatic testing with contracts ()

Test Input deposit Sv: INTEGER) .
require
v > 0
Test Execution do
balance := balance + v
[ensure '
balance = old balance + v
Test Oracle ond =

Test valid Test invalid
(see postcondition) Error in program
NI (ele] [e [11} Test succesful Error in program

14

Random testing

* Create random objects

— Call random creation procedure

— Call random commands

— For arguments, generate random input
* Basic types

— Random numbers

— Interesting values: max_value, 1, 0, -1, ...

Specification — Verification — Correction

AutoTest)

* Basic operation:
— Record sequence of calls made to create objects
— Call routine under test with different objects
— If execution is ok, this is a successful test case
— If a postcondition is violated, this is a failing test case

* Improve test case generation

— Smarter input selection
(e.g. use static analysis to select objects)

— Test case minimization (removing unnecessary calls)
— Build object pool

Specification — Verification — Correction

Static verification ()

* Need a model of the programming language
— What is the effect of an instruction

* Translate program to a mathematical
representation

e Use an automatic or interactive theorem

prover to check that specification is satisfied
in every possible execution

Specification — Verification — Correction

AutoProof process “

Eiffel Boogie
AST File

EiffelStudio AutoProof

Eiffel
Errors

Boogie
Errors

* Translates AST from EiffelStudio to Boogie
* Uses Boogie verifier to check Boogie files
* Traces verification errors back to Eiffel source

Specification — Verification — Correction

18

AutoProof translation

)

make
local
a: ACCOUNT
do
create a.make
check a.balance = 0 end
end

implementation APPLICATION.make {
var a;
entry:
havoc a;
assume (a!= Void) && (!Heap[a, $allocated]);
Heap[a, $allocated] := true;
Heap[a, $type] := ACCOUNT;
call create.ACCOUNT.make(a);
assert Heap[a, ACCOUNT.balance] = 0;

Specification — Verification — Correction

Automatic Fault Correction

)

Build a test suite

— Manual or automatic

Find and localize faults
— Failing test cases
— Static analysis

Try fixes
— Apply fix templates with random code changes

Validate fixes
— Run test suite again, now all tests have to pass

Specification — Verification — Correction

AutoFix: model-based localization (-)

* Abstract state as boolean queries
* Find differences between passing and failing tests

move_item (v: G) 0 1 count-1 count count+1

—- from TWO_WAY "Ly . ™)
-- Move " v' fo the le L____i«—j:" “I—IZ—I‘—"L____E
require v /= Void ; has (v) T
local idx: INTEGER ; found: BOOLEAN
do
idx := index
from start until found or after loop
found := (v = item)
if not found then forth end

Invar. from passing end Invar. from failing
remove
iS_empty go_i_th (idx) is empty
before put_left (v) before
after end after

Decification — Verification — Correction

AutoFix: instantiating fixes)

* Fix schema for common fixes

if fail_condition then if fail_condition then
fixing_action fixing_action

else end
original_instruction original_instruction

end

, Instantiate
move_item (v: G)

require v /= Void ; has (v)
local idx: INTEGER ; found: BOOLEAN
do
idx := index
from start until found or after lo
found := (v = item)
if not found then forth end
end
remove
go_i_th (idx)
put_left (v)
end

if before then
forth

end

put_left(v)

tion

Demo

e AutoTest
e AutoProof
 AutoFix

Specification — Verification — Correction

Eiffel Verification Environment (EVE(Y)

 Research branch of EiffelStudio

* |Integrates most tools developed by us
— AutoTest (dynamic verification)
— AutoProof (static verification)
— AutoFix (fault correction)
— Autolnfer (dynamic contract inference)
— MultiStar (static verification)
— AliasAnalysis (static analysis)

* Other tools currently not integrated
— CITADEL (dynamic contract inference)
— gin-pink (static loop invariant inference)

Putting It All Together “

AliasAnalysis

gin-pink

staticlinference

AutoProof
MultiStar

proof ok

\ 4

contracts

proof

. ' Manual
AutoFix . J
Fixes
tests|failed
Element
AutoTest Dynamically
Verified

CITADEL
Autolnfer

Element
Statically
Verified

ok

25

References)

EVE: Eiffel Verification Environment
http://se.inf.ethz.ch/research/eve/

AutoTest, AutoProof, AutoFix, CITADEL, ...
http://se.inf.ethz.ch/research/

CodeContracts
http://research.microsoft.com/en-us/projects/contracts/

Java Modeling Language (JML)
http://www.cs.ucf.edu/~leavens/JML/
D Programming Language
http://dlang.org/

Daikon
http://groups.csail.mit.edu/pag/daikon/

Boogie Verifier
http://boogie.codeplex.com/

26

http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/research/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://www.cs.ucf.edu/~leavens/JML/
http://dlang.org/
http://dlang.org/
http://groups.csail.mit.edu/pag/daikon/
http://groups.csail.mit.edu/pag/daikon/
http://groups.csail.mit.edu/pag/daikon/
http://boogie.codeplex.com/
http://boogie.codeplex.com/

