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Problems in Assignment-2 Solutions

» Command or query?
connecting_lines
(a_station_1, a_station_2: STATION): V_SEQUENCE [LINE]
Noun phrases for query names; verb phrases for command names

» Instruction separation?
Comma (,), space( ), semicolon (;), or nothing

> STRING_8 Vs. STRING_32

make

local
1 line: STRING_32
c: UTF_CONVERTER

do
Io.read_1line
1 1line := c.utf_8 string 8 to_string 32 (Io.last string)
print (1 _line.count)

end



Today

» Understanding contracts
(preconditions, postconditions, and class invariants)

Reference types vs. expanded types
Basic types

Entities and objects

Object creation

Assignment
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Why do we need contracts? ©

« They are executable specifications that evolve together
with the code

« Together with tests, they are a great tool for finding
bugs

 They help us reason about an O-O program at the level of
classes and routines

* Proving (part of) programs correct requires some way to
specify how the program should operate. Contracts are a
way to specify the program



Assertions

Assertion tag

(optional, but Condition
recommended) (required)
- — N - I
balance_non_negative: balance >= O
N -
—

Assertion clause

The assertion tag (if present) is used to construct a more
informative error message when the condition is violated.



Precondition

Property that a feature imposes on clients

clap (n: INTEGER)
-- Clap n times and update count.
require
not_too_tired: count <= 10
n_positive: n >0

A feature without a require clause is always
applicable, as if the precondition reads
require
always_OK: True



Postcondition

Property that a feature guarantees on termination

clap (n: INTEGER)
-- Clap n times and update count.
require
not_too_tired: count <= 10
h_positive: n>0

ensure
count_updated: count = old count + n

A feature without an ensure clause always satisfies

its postcondition, as if the postcondition reads
ensure
always_OK: True




Class Invariant

Property that is true of the current object at
any observable point

class ACROBAT

invariant
count_non_neqgative: count >=0
en

A class without an invariant clause has a trivial
invariant

always_OK: True




Pre- and postcondition example

Add pre- and postconditions to:

smallest_power (n, bound: NATURAL): NATURAL

-- Smallest x such that "n'“x is greater or equal " bound".
require
.?.9.9

do

ensure
'?0909
end



One possible solution

smallest_power (n, bound: NATURAL): NATURAL
-- Smallest x such that "n'"x is greater or equal " bound’.
require
n_large_enough: n> 1
bound_large_enough: bound > 1
do

ensure
greater_equal_bound: n © Result >= bound
smallest: n © (Result - 1) < bound

end
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Hands-on exercise

Add invariant(s) to the class ACROBAT_WITH_BUDDY.

Add preconditions and postconditions to feature make in
ACROBAT_WITH_BUDDY.
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Class ACROBAT_WITH_BUDDY ©

class
ACROBAT _WITH BUDDY

inherit
ACROBAT
redefine
twirl, clap, count
end

create
make

feature
make (p: ACROBAT)
do
-- Remember " p’ being
-- the buddy.

end

clap (n: INTEGER)
do
-- Clap "n’ times and
-- forward to buddy.
end

twirl (n: INTEGER)
do
-- Twirl "n’ times and
-- forward to buddy.
end

count: INTEGER
do
-- Ask buddy and return his
-- answer.
end

buddy: ACROBAT

end
12



What are reference and expanded types?

Reference types: s contains the address (reference or
location) of the object.

Example: ' /i/'= AB3409E1
S | AB3409E1
s: STATION

(STATION)

Expanded types: p points directly to the object.
Example:

P H AO0897BC
p: POINT 5.0

(POINT)

©
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Why expanded types? ©

To represent basic types (INTEGER, REAL,...)

To model external world objects realistically, i.e. objects
that have sub-objects (and no sharing), for example a class
WORKSTATION and its CPU.
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How to declare an expanded type? ©

To create an expanded type, declare the class with
keyword expanded:

expanded class COUPLE
feature -- Access

man, woman: HUMAN ~———=====___ Reference |
years_together: INTEGER —= ?

end

Now all the entities of type COUPLE are automatically
expanded:

pitt_and_jolie: COUPLE

§|J Expanded |

15



Objects of reference or expanded types ©

Objects of reference types: they don 1t exist when we
declare them (they are initially Void).

s: STATION

We need to explicitly create them with a create
instruction.
create s
Objects of expanded types: they exist by just declaring
them (they are never Void)
p: POINT

Feature default_create from ANY is implicitly invoked on
them
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Can expanded types contain reference types?

Expanded types can contain reference types, and vice
versa.

pitt_and_jolie

(HUMAN)

(HUMAN)

(SOME_CLASS)

©
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Reference equality

>H< b
2.0

(VECTOR)
a=b?
10 | a b —— RO
2.0 2.0
(VECTOR) (VECTOR)
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Expanded entities equality

a
5.0

(POINT)

b
5.0

(POINT)

——————————

(SOME_CLASS)

Q
I
G
*\J

Entities of expanded types are compared by valuel

19



Expanded entities equality

John
a —»| 32
(HUMAN)
> Jane
30
(COUPLE) (HUMAR)
John
32 < b
(HUMAN)
Jane |*
30
(HUMAN)
(COUPLE)

(SOME_CLASS)

a=b?

20



Expanded entities equality

a

Jane

«—

30

(HUMAN)

<

—

(COUPLE) |

John

32

—

—
e

(COUPLE)

(SOME_CLASS)

a=b?

(HUMAN)
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Basic types

Their only privilege is to use manifest constants to

construct their instances:

b: BOOLEAN
x: INTEGER

¢: CHARACTER
STRING

S.

b
X
c
s

= True

5 -- instead of create x.make_five

1 ’

“TI love Eiffel”
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Basic types

Some basic types (BOOLEAN, INTEGER, NATURAL,
REAL, CHARACTER) are expanded...

a4 b [
o NG b S

... and immutable (they do not contain commands to change
the state of their instances)...

a:= a.olus (b) instead of a.add (b)
a+b

‘ Alias for p/US' I
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Strings are a bit different

Strings in Eiffel are not expanded...

s. STRING

) area

count

.. and not immutable

s:= “T love Eiffel”
s.append (" very much!”)

»i—»
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Object comparison: =versus ~ ©

sl: STRING = “Teddy”
s2: STRING = “Teddy”

sl = s2 -- False: reference comparison on different objects

sl ~s2 --True

Now you know how to compare the content of two objects
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Initialization

Default value of any reference type is Void

Default values of basic expanded types are:
> False for BOOLEAN
> 0 for numeric types (INTEGER, NATURAL, REAL)
» “null” character (its code is 0) for CHARACTER

Default value of a non-basic expanded type is an object,
whose fields have default values of their types

¢
=_“’
—
*

(COUPLE)
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Initialization

What is the default value for the following
classes?

expanded class POINT
feature x, y. REAL end

class VECTOR
feature x, y: REAL end

STRING Void
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Creation procedures ©

> Instruction create x will initialize all the fields of the
new object attached to x with default values

» What if we want some specific initialization? E.g., to
make object consistent with its class invariant?

Class CUSTOMER

id: STRING
invariant
id /= Void

» Use creation procedure:
create a_customer.set_id ("13400002")

28



Class CUSTOMER ©

class CUSTOMER

create set _id

List one or more

feature creation procedures

id: STRING
-- Unique identifier for Current.

set_id (a_id: STRING)
/ -- Associate this customer with ° cﬁd'.
require

May be used as a

id_exists: a_id /= Void regular command and as
do - a creation procedure
id:= a_id
ensure

id_set: id=a_id

\ end /

invariant

Is established by

id_exists: id /= Void set_id
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Object creation

To create an object:

> If class has no create clause, use basic form:
create x

> If the class has a create clause listing one or
more procedures, use

create x.make (...)

where make is one of the creation procedures,
and (...) stands for arguments if any.
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Some acrobatics

class DIRECTOR
create prepare_and_play
feature

acrobatl, acrobat2, acrobat3: ACROBAT
friendl, friend2: ACROBAT_WITH_BUDDY

authorl: AUTHOR — .
( hat entit d J
curmudgeonl. CURMUDGEON jidha = S'%?a‘;';% used in

prepare_and_play

do : .
authorl.clap (4) kot sfMér(']?rz%ewﬁh the
friendl.twirl (2) prepare_and_play?
curmudgeonl.clap (7)

acrobat2.clap (curmudgeonl.count)
acrobat3.twirl (friend2.count)
friendl.buddy.clap (friendl.count)
friend2.clap (2)
end
end

31



Some acrobatics

class DIRECTOR

create prepare_and_play

feature
acrobatl, acrobat2, acrobat3: ACROBAT
friendl, friend2: ACROBAT_WITH_BUDDY
authorl: AUTHOR

curmudgeonl: CURMUDGEON Which entities are still Void
after execution of line 4?
prepare_and_play

do
1 create acrobatl Which of the classes
 areate cerotar? mentionsd here have
3 create acrobat3
4 create friendl.make_with_buddy (acrobatl)
5 create friend2.make_with_buddy (friendl)
6 create authorl
7 create curmudgeonl Why is the creation
end | procedure necessary? \
end
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Custom initialization for expanded types ©

» Expanded classes are not creatable using a creation

feature of your choice
expanded class POINT
create make
feature makedo x := 5.0,y := 5.0 end

o

» But you can use (and possibly redefine) default_create
expanded class POINT

inherit ANY
redefine default _create
feature
default _create
do
x:=50'y:=5.0
end

end
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Assignment ©

»Assignment is an instruction (What other instructions do
you know?)

» Syntax:
a=>b
> where ais a variable (e.g., an attribute) and b is an
expression (e.g. an argument or a query);

> ais called the target of the assignment and b the
source.

»Semantics:
> after the assignment a equals b (a = b);
> the value of b is not changed by the assignment.
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Reference assignment

=
2.0

(VECTOR)

—
-1.0

(VECTOR)

a references the same object as b:

a=b
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Expanded assignment

a b
/.8 i /.8

(POINT) (POINT)

The value of b is copied to a, but again:
a=b
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Assignment

Explain graphically the effect of an
assignment:

.John" a .Dan"
32  |[¢— » 25 |e—
— _ -
24
(HUMAN) HUMAN
(COUPLE) (HUMAR) (COUPLE)
a:=b

Here COUPLE is an expanded class, HUMAN is a
reference class
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Attachment

More general term than assignment
» Includes:
> Assignment

> Passing arguments to a routine
f(a: SOME_TYPE)
do .. end

f(b)
» Same semantics
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Dynamic aliasing ©

a, b: VECTOR a

create b.make (1.0, 0.0) X 00 b

a:=b 4 : =
(VECTOR)

» now aand b reference the same object (they are two
names or aliases of the same object)

> any change to the object attached to a will be reflected
when accessing it using b

» any change to the object attached to b will be reflected
when accessing it using a
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Dynamic aliasing

What are the values of a.x, a.y, b.x and
b.y after executing instructions 1-4?

A w N+

a, b VECTOR

create a.make (-1.0, 2.0)
create b.make (1.0, 0.0)
a:=b

b.set_x (5.0)

a.set_y (-10.0)

X
Y

-100 [T~

(VECTOR)

~
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Meet Teddy

41



