E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 4

Problems in Assignment-2 Solutions

» Command or query?
connecting_lines
(a_station_1, a_station_2: STATION): V_SEQUENCE [LINE]
Noun phrases for query names; verb phrases for command names

» Instruction separation?
Comma (,), space(), semicolon (;), or nothing

> STRING_8 Vs. STRING_32

make

local
1 line: STRING_32
c: UTF_CONVERTER

do
Io.read_1line
1 1line := c.utf_8 string 8 to_string 32 (Io.last string)
print (1 _line.count)

end

Today

» Understanding contracts
(preconditions, postconditions, and class invariants)

Reference types vs. expanded types
Basic types

Entities and objects

Object creation

Assignment

YV V.V V VY

Why do we need contracts? ©

« They are executable specifications that evolve together
with the code

« Together with tests, they are a great tool for finding
bugs

 They help us reason about an O-O program at the level of
classes and routines

* Proving (part of) programs correct requires some way to
specify how the program should operate. Contracts are a
way to specify the program

Assertions

Assertion tag

(optional, but Condition
recommended) (required)
- — N - I
balance_non_negative: balance >= O
N -
—

Assertion clause

The assertion tag (if present) is used to construct a more
informative error message when the condition is violated.

Precondition

Property that a feature imposes on clients

clap (n: INTEGER)
-- Clap n times and update count.
require
not_too_tired: count <= 10
n_positive: n >0

A feature without a require clause is always
applicable, as if the precondition reads
require
always_OK: True

Postcondition

Property that a feature guarantees on termination

clap (n: INTEGER)
-- Clap n times and update count.
require
not_too_tired: count <= 10
h_positive: n>0

ensure
count_updated: count = old count + n

A feature without an ensure clause always satisfies

its postcondition, as if the postcondition reads
ensure
always_OK: True

Class Invariant

Property that is true of the current object at
any observable point

class ACROBAT

invariant
count_non_neqgative: count >=0
en

A class without an invariant clause has a trivial
invariant

always_OK: True

Pre- and postcondition example

Add pre- and postconditions to:

smallest_power (n, bound: NATURAL): NATURAL

-- Smallest x such that "n'“x is greater or equal " bound".
require
.?.9.9

do

ensure
'?0909
end

One possible solution

smallest_power (n, bound: NATURAL): NATURAL
-- Smallest x such that "n'"x is greater or equal " bound’.
require
n_large_enough: n> 1
bound_large_enough: bound > 1
do

ensure
greater_equal_bound: n © Result >= bound
smallest: n © (Result - 1) < bound

end

10

Hands-on exercise

Add invariant(s) to the class ACROBAT_WITH_BUDDY.

Add preconditions and postconditions to feature make in
ACROBAT_WITH_BUDDY.

11

Class ACROBAT_WITH_BUDDY ©

class
ACROBAT _WITH BUDDY

inherit
ACROBAT
redefine
twirl, clap, count
end

create
make

feature
make (p: ACROBAT)
do
-- Remember " p’ being
-- the buddy.

end

clap (n: INTEGER)
do
-- Clap "n’ times and
-- forward to buddy.
end

twirl (n: INTEGER)
do
-- Twirl "n’ times and
-- forward to buddy.
end

count: INTEGER
do
-- Ask buddy and return his
-- answer.
end

buddy: ACROBAT

end
12

What are reference and expanded types?

Reference types: s contains the address (reference or
location) of the object.

Example: ' /i/'= AB3409E1
S | AB3409E1
s: STATION

(STATION)

Expanded types: p points directly to the object.
Example:

P H AO0897BC
p: POINT 5.0

(POINT)

©

13

Why expanded types? ©

To represent basic types (INTEGER, REAL,...)

To model external world objects realistically, i.e. objects
that have sub-objects (and no sharing), for example a class
WORKSTATION and its CPU.

14

How to declare an expanded type? ©

To create an expanded type, declare the class with
keyword expanded:

expanded class COUPLE
feature -- Access

man, woman: HUMAN ~———=====___ Reference |
years_together: INTEGER —= ?

end

Now all the entities of type COUPLE are automatically
expanded:

pitt_and_jolie: COUPLE

§|J Expanded |

15

Objects of reference or expanded types ©

Objects of reference types: they don 1t exist when we
declare them (they are initially Void).

s: STATION

We need to explicitly create them with a create
instruction.
create s
Objects of expanded types: they exist by just declaring
them (they are never Void)
p: POINT

Feature default_create from ANY is implicitly invoked on
them

16

Can expanded types contain reference types?

Expanded types can contain reference types, and vice
versa.

pitt_and_jolie

(HUMAN)

(HUMAN)

(SOME_CLASS)

©

17

Reference equality

>H< b
2.0

(VECTOR)
a=b?
10 | a b —— RO
2.0 2.0
(VECTOR) (VECTOR)

18

Expanded entities equality

a
5.0

(POINT)

b
5.0

(POINT)

——————————

(SOME_CLASS)

Q
I
G
*\J

Entities of expanded types are compared by valuel

19

Expanded entities equality

John
a —»| 32
(HUMAN)
> Jane
30
(COUPLE) (HUMAR)
John
32 < b
(HUMAN)
Jane |*
30
(HUMAN)
(COUPLE)

(SOME_CLASS)

a=b?

20

Expanded entities equality

a

Jane

«—

30

(HUMAN)

<

—

(COUPLE) |

John

32

—

—
e

(COUPLE)

(SOME_CLASS)

a=b?

(HUMAN)

21

Basic types

Their only privilege is to use manifest constants to

construct their instances:

b: BOOLEAN
x: INTEGER

¢: CHARACTER
STRING

S.

b
X
c
s

= True

5 -- instead of create x.make_five

1 ’

“TI love Eiffel”

22

Basic types

Some basic types (BOOLEAN, INTEGER, NATURAL,
REAL, CHARACTER) are expanded...

a4 b [
o NG b S

... and immutable (they do not contain commands to change
the state of their instances)...

a:= a.olus (b) instead of a.add (b)
a+b

‘ Alias for p/US' I

23

Strings are a bit different

Strings in Eiffel are not expanded...

s. STRING

) area

count

.. and not immutable

s:= “T love Eiffel”
s.append (" very much!”)

»i—»

24

Object comparison: =versus ~ ©

sl: STRING = “Teddy”
s2: STRING = “Teddy”

sl = s2 -- False: reference comparison on different objects

sl ~s2 --True

Now you know how to compare the content of two objects

25

Initialization

Default value of any reference type is Void

Default values of basic expanded types are:
> False for BOOLEAN
> 0 for numeric types (INTEGER, NATURAL, REAL)
» “null” character (its code is 0) for CHARACTER

Default value of a non-basic expanded type is an object,
whose fields have default values of their types

¢
=_“’
—
*

(COUPLE)

26

Initialization

What is the default value for the following
classes?

expanded class POINT
feature x, y. REAL end

class VECTOR
feature x, y: REAL end

STRING Void

27

Creation procedures ©

> Instruction create x will initialize all the fields of the
new object attached to x with default values

» What if we want some specific initialization? E.g., to
make object consistent with its class invariant?

Class CUSTOMER

id: STRING
invariant
id /= Void

» Use creation procedure:
create a_customer.set_id ("13400002")

28

Class CUSTOMER ©

class CUSTOMER

create set _id

List one or more

feature creation procedures

id: STRING
-- Unique identifier for Current.

set_id (a_id: STRING)
/ -- Associate this customer with ° cﬁd'.
require

May be used as a

id_exists: a_id /= Void regular command and as
do - a creation procedure
id:= a_id
ensure

id_set: id=a_id

\ end /

invariant

Is established by

id_exists: id /= Void set_id

29

Object creation

To create an object:

> If class has no create clause, use basic form:
create x

> If the class has a create clause listing one or
more procedures, use

create x.make (...)

where make is one of the creation procedures,
and (...) stands for arguments if any.

30

Some acrobatics

class DIRECTOR
create prepare_and_play
feature

acrobatl, acrobat2, acrobat3: ACROBAT
friendl, friend2: ACROBAT_WITH_BUDDY

authorl: AUTHOR — .
(hat entit d J
curmudgeonl. CURMUDGEON jidha = S'%?a‘;';% used in

prepare_and_play

do : .
authorl.clap (4) kot sfMér(']?rz%ewﬁh the
friendl.twirl (2) prepare_and_play?
curmudgeonl.clap (7)

acrobat2.clap (curmudgeonl.count)
acrobat3.twirl (friend2.count)
friendl.buddy.clap (friendl.count)
friend2.clap (2)
end
end

31

Some acrobatics

class DIRECTOR

create prepare_and_play

feature
acrobatl, acrobat2, acrobat3: ACROBAT
friendl, friend2: ACROBAT_WITH_BUDDY
authorl: AUTHOR

curmudgeonl: CURMUDGEON Which entities are still Void
after execution of line 4?
prepare_and_play

do
1 create acrobatl Which of the classes
 areate cerotar? mentionsd here have
3 create acrobat3
4 create friendl.make_with_buddy (acrobatl)
5 create friend2.make_with_buddy (friendl)
6 create authorl
7 create curmudgeonl Why is the creation
end | procedure necessary? \
end

32

Custom initialization for expanded types ©

» Expanded classes are not creatable using a creation

feature of your choice
expanded class POINT
create make
feature makedo x := 5.0,y := 5.0 end

o

» But you can use (and possibly redefine) default_create
expanded class POINT

inherit ANY
redefine default _create
feature
default _create
do
x:=50'y:=5.0
end

end

33

Assignment ©

»Assignment is an instruction (What other instructions do
you know?)

» Syntax:
a=>b
> where ais a variable (e.g., an attribute) and b is an
expression (e.g. an argument or a query);

> ais called the target of the assignment and b the
source.

»Semantics:
> after the assignment a equals b (a = b);
> the value of b is not changed by the assignment.

34

Reference assignment

=
2.0

(VECTOR)

—
-1.0

(VECTOR)

a references the same object as b:

a=b

35

Expanded assignment

a b
/.8 i /.8

(POINT) (POINT)

The value of b is copied to a, but again:
a=b

36

Assignment

Explain graphically the effect of an
assignment:

.John" a .Dan"
32 |[¢— » 25 |e—
— _ -
24
(HUMAN) HUMAN
(COUPLE) (HUMAR) (COUPLE)
a:=b

Here COUPLE is an expanded class, HUMAN is a
reference class

37

Attachment

More general term than assignment
» Includes:
> Assignment

> Passing arguments to a routine
f(a: SOME_TYPE)
do .. end

f(b)
» Same semantics

38

Dynamic aliasing ©

a, b: VECTOR a

create b.make (1.0, 0.0) X 00 b

a:=b 4 : =
(VECTOR)

» now aand b reference the same object (they are two
names or aliases of the same object)

> any change to the object attached to a will be reflected
when accessing it using b

» any change to the object attached to b will be reflected
when accessing it using a

39

Dynamic aliasing

What are the values of a.x, a.y, b.x and
b.y after executing instructions 1-4?

A w N+

a, b VECTOR

create a.make (-1.0, 2.0)
create b.make (1.0, 0.0)
a:=b

b.set_x (5.0)

a.set_y (-10.0)

X
Y

-100 [T~

(VECTOR)

~

40

Meet Teddy

41

