E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 9

Today

> Feedback on the mock exam

> Recursion
> Recursion

Recursion
= Recursion
Recursion

» Basic data structures
> Arrays
» Linked Lists
» Hashtables

Recursion: an example

» Fibonacci sequence:
0,11,2,3,5,8,13,21, 34,55, ..

> How can we calculate the n-th Fibonacci number?

> Recursive formula:
F(n) = F(n-1) + F(n-2) forn»>1
with F(O) =0, F(1) =1

Recursion: a second example

» Another example of recursion

Source: en.wikipedia.org/wiki/Recursion https://www.flickr.com/photos/tin-g

A recursive feature ©

fibonacci(n: INTEGER): INTEGER
do
if n=0 then

Result := 0 : :
olseif n = 1 then > Calculate flbc?_;laca(4)

Result =1
ose (fiot4)

Result := fibonacci(n-1) +

fibonacci(n-2) " 2 1 ”
end 2 [kL
" (e o) (Fo)) (o)

The general notion of recursion

A definition for a concept is recursive
if it involves an instance of the concept itself

> The definition may use "instances of concept itself "
> Recursion is the use of a recursive definition

Thoughts

_ divine!”
To iterate IS human, To recurse div

but ... computers are built by humans

Better use iterative approach if r'easonable)

Iteration vs. recursion

>

>

Every recursion could be rewritten as an iteration and
vice versa.

Recursion is slower because all functions calls must be

stored in memory to allow the return back to the caller
functions.

I't's more intuitive in cases where it mimics our
approach to the problem, e.g. generating Fibonacci
numbers.

Data structures such as trees are easier to explor with
recursion.

Be careful when using recursion! ©

™ EiffelStudio Warning

Possible stack overflow detected. The application has been paused to
let you
examine its current status.

[OK J | Ignore

> Stack: a region of memory that store temporary data
created by your program.

Exercise: Printing numbers

> If we pass n =4, what will be printed?

print_int (n: INTEGER) print_int (n: INTEGER)

do do
print (n) if n>1then
if n>1then print_int (n-1)
print_int (n-1) end
end print (n)
end end

‘ 4321 | | 1234 \

10

Exercise: Reverse string

» Print a given string in reverse order using a
recursive function.

11

Exercise: Solution

class APPLICATION

create
make

feature
make

local
s: STRING

do
create s.make_from_string (“poldomangia”)
invert(s)

end

invert (s: STRING)
require
s /=Void
do
if not s.is_empty then
invert (s.substring (2, s.count))
print (s[1])
end
end
end

12

Exercise: Sequences

» Worite a recursive and an iterative program to
print the following:

111,112,113 ,121,122,123,131,132,133,
211,212 ,213,221,222,223,231,232,233,
311,312,313,321,322,323,331,332,333,

» Note that the recursive solution can use loops
Too.

13

Exercise: Recursive solution

cells: ARRAY [INTEGER]

handle_cell (n: INTEGER)
local
i INTEGER
do
from
[:=1
until
/1>3
loop
cells [n] := i
if (n<3)then
handle_cell (n+1)
else
print (cells [1].out+cells [2].out+cells [3].out+",")
end
[:=i+1
end
end

14

Exercise: Iterative solution ©

from
[:=1
until
>3
loop

print (i.out+j.out+k.out+",")
k:i=k+1
end
Ji=j+1
end
[:=7+1
end

15

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

»>Constant time for random reads/writes

»Costly to resize (including inserting elements in the
middle of the array)

»Must be indexed by an integer
»Generally very space efficient.

In Eiffel the basic array class is generic, V_ARRAY [&].

16

Using Arrays

Which of the following lines are valid?
Which can fail, and why?

> my_array : V_ARRAY [STRING] Valid, can't fail|

» my_array ["Fred"] := "Sam" Invalid |

» my_array [10] + “'s Hat" Valid, can fail
» my_array [5] := "Ed" Valid, can fail

» my_array.force ("Constantine”, 9) | Valid, can't fail

Which is not a constant-time array operation?

17

Linked Lists

> Linked lists are one of the simplest data-structures
> They consist of linkable cells

class LINKABLE [&]

create
set _value
feature
set_value (v: 6)
do
value := v
end

value : G

set_next (n: LINKABLE[&])
do
next = n
end

next . LINKABLE [&]
end

18

Using Linked Lists

Suppose you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

»Insert at the beginning O (1)
»Insert in the middle O (n);
»Insert at the end O (n);
»Find the length of the list O (n)

What simple optimization could be made to make end-
access faster?

19

Binary search tree

i s

> A binary search tree is a binary tree where each node
has a COMPARABLE value.

> Left sub-tree of a node contains only values less than
the node’s value.

» Right sub-tree of a node contains only values greater
than or equal to the node's value.

20

Exercise: Adding nodes

> Implement command put (n: INTEGER) in class
NODE which creates a new NODE object at the
correct place in the binary search tree rooted by
Current.

> Test your code with a class APPLICA TION which
builds a binary search tree using put and prints out
the values using the traversal feature.

» Hint: You might need to adapt the traversal
feature such that the values are printed out in
order.

21

Exercise: Solution

> See code in IDE.

22

Exercise: Searching

» Implement feature has (n: INTEGER): BOOLEAN
in class NODE which returns true if and only if nis in
the tree rooted by Current.

> Test your code with a class APPLICATION which builds
a binary search tree and calls has.

23

Exercise: Solution

> See code in IDE.

24

