
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 4:

Introduction to concurrency and
SCOOP

2

Multiprocessing, parallelism*

Many of today’s computations can take advantage of multiple
processing units (through multi-core processors):

* This slide and the next are from material developed by Sebastian Nanz as part of a jointly taught ETH cours

Terminology:

 Multiprocessing : the use of more than one processing
unit in a system

 Parallel execution: processes running at the same time

Process 1 CPU 1

Process 2 CPU 2
Instructions

3

Multitasking, concurrency

Even on systems with a single processing unit we may give the
illusion of that several programs run at once

The OS switches between executing different tasks

Terminology:

 Interleaving: several tasks active, only one running at a time

 Multitasking: the OS runs interleaved executions

 Concurrency: multiprocessing, multitasking, or any combination

Process 1

CPU

Process 2

Instructions

4

Reasons for using concurrency

1. Performance

2. Convenience

3. Modeling

Faster computation through
multiprocessing

Programs performing
several actions at once

(through multithreading)

Adapting to the world’s built-in
concurrency (networking, real-time,

robotics, modeling)

5

The end of Moore‘s Law as we knew it

Clock speed

Transistor
density

Source:
Intel

6

What they say about concurrent programming

Intel, 2006:

 Multi-core processing is taking the industry on a fast-moving and exciting ride into
profoundly new territory

Rick Rashid, head of Microsoft Research, 2007:

 Multicore processors represent one of the largest technology transitions in the
computing industry today, with deep implications for how we develop software

Bill Gates:

 We have never had a problem like this.
A breakthrough is needed.

Dave Patterson, UC Berkeley, 2007:

 Industry has basically thrown a Hail Mary. The whole industry is betting on parallel
computing. They’ve thrown it, but the big problem is catching it

7

US National Academy of Science, 2011

Heroic programmers can exploit vast amounts of
parallelism...

However, none of those developments comes close to the
ubiquitous support for programming parallel hardware
that is required to ensure that IT’s effect on society over the
next two decades will be as stunning as it has been over the last
half-century

8

Programming for heroes: dining philosophers

Allen Downey: The Little Green Book of
Semaphores, greenteapress.com/semaphores/

http://greenteapress.com/semaphores/

9

Programming for heroes: dining philosophers

10

Bank transfer

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- If enough funds, transfer amount from source to target.

do

if sourcebalance >= amount then

sourcewithdraw (amount)

targetdeposit (amount)

end

end

transfer (Jane, Jill, 100)

transfer (Jane, Joan, 100)

Jane Jill Joan

100 1000

0 0100

-100 1000

1

2

1
2
12

11

Bank transfer (better version)

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- Transfer amount from source to target.

require

sourcebalance >= amount

do

sourcewithdraw (amount)

targetdeposit (amount)

ensure

sourcebalance = old sourcebalance – amount

targetbalance = old targetbalance + amount

end

12

The inability to reason from APIs

if acc1.balance >= 100 then transfer (acc1, acc2, 100) end

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- Transfer amount from source to target.

require

sourcebalance >= amount

do

…

ensure

sourcebalance = old sourcebalance – amount

targetbalance = old targetbalance + amount

end

if acc1.balance >= 100 then transfer (acc1, acc3, 100) end

invariant
balance >= 0

13

The core question

Can we bring concurrent programming
to the same level

of abstraction and convenience
as sequential programming?

14

Four risks

Data race

 Incorrect concurrent access to shared data

Deadlock

 Computation cannot progress because of circular
waiting

Starvation

 Execution favors certain processes over others, which
never get executed

Priority inversion

 Locks cause a violation of priority rules

15

Data race

 Thank you for calling Ecstatic Opera Company.
How can I help you?

 (Joan) I need a single seat for next Tuesday’s performance of Pique Dame.

 Let me check... You’re in luck! Just one left. Eighty dollars.

 Great. I’ll go for it.

 Just a moment while I book it.

 Thanks.

 Sorry, there are no seats available for Tuesday.

16

Data race: scenario

Notation adapted from Mordechai Ben Ari,
Principles of Concurrent and Distributed Programming

17

Data races (race conditions)

If processes (OS processes, threads) are completely
independent, concurrency is easy

Usually, however, threads interfere with each other by
accessing and modifying common resources, such as variables
and objects

 Unwanted dependency of the computation’s result on
nondeterministic interleaving is a race condition or data
race

 Such errors can stay hidden for a long time and are
difficult to find by testing

18

Deadlock

(Jane)

 I’d like to change my Tuesday evening seat
for the matinee performance.

 Both shows are sold out, but I heard there was a customer
who wanted to change the other way around. Matinee
booking is handled by a different office, so let me call
them and make the change.

 Thanks.

 (Ten minutes later.) “The number is still busy.”

19

Deadlock: scenario

20

Starvation

Jane keeps calling, but agents always pick up someone else’s
call

21

Priority inversion

Norm: normal customer

Frieda: member of “Friends of Ecstatic”: priority over Norm

Ben: benefactor (priority over both)

Bookings open at 9; Ben comes at 9:02, jumps to front of line

Cashier, handling Norm’s request, pushes Norm aside to take care
of Ben; but Ben uses a credit card and the card machine is in use to
check Norm’s card. So Ben, despite his elite status, has to wait.

In walks Frieda, ready to pay cash

Cashier interrupts Norm’s transaction again (card machine remains
busy) and gets Frieda a ticket

Norm’s transaction resumes and, as soon as credit check finishes, is
interrupted for Ben — too late, as Frieda walked away with the last
ticket

22

Priority inversion: scenario

23

Choices in the SCOOP model

Choice 1: object-oriented programming

 (Static) type and module structure: class

 (Dynamic) data structure: object

 Inheritance for (static) reuse and (dynamic) binding

24

Choice 2: processors

Computation is the responsibility of “processors”, each of
which is a sequential execution mechanism

(such as a thread)

25

Choice 3: regions

Objects partitioned into regions

Operations on object in a given region are the responsibility of
á processor, the region’s handler

Some regions, however, are passive: they do not have a handler

26

Consequence of choice 3

At any given time, at most one operation in progress on any
given object

(In fact, on objects in any given region)

No intra-object concurrency

27

Choice 4

The execution of a call requested by a processor on objects in
another region is asynchronous

Introduce distinction between:

 Routine/method call

 Routine application

28

The sequential view: O-O feature calls

x.r (a)

Processor

Client Supplier

previous

x.r (a)

next

r (u : A)
do

…
end

29

The concurrent form of call: asynchronous

.

Client Supplier

previous

x.r (a)

next

r (u : A)
do

…
end

Client’s handler Supplier’s handler

30

Choice 5

The application of a call has exclusive access to the needed
object

31

Choice 6

The application of a call has exclusive access to the needed
objects

32

Choice 7

A query is blocking (synchronous)

Based on distinction between two kinds of operation:

 Command: does something
(in programming languages: procedures)

 Query: gives some information
(in programming languages: functions,
fields/attributes/instance variables)

33

Choice 6

The application of a call has exclusive access to the needed
objects

34

Exclusive access to multiple objects

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- Transfer amount from source to target.
require

sourcebalance >= amount
do

sourcewithdraw (amount)
targetdeposit (amount)

ensure
sourcebalance = old sourcebalance – amount
targetbalance = old targetbalance + amount

end

separate

35

Choice 8

An operation on an object may have to wait until a condition is
satisfied (expressed by a precondition)

36

Using preconditions for waiting

if acc1.balance >= 100 then transfer (acc1, acc2, 100) end

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- Transfer amount from source to target.

require

sourcebalance >= amount

do

…

ensure

sourcebalance = old sourcebalance – amount

targetbalance = old targetbalance + amount

end

if acc1.balance >= 100 then transfer (acc1, acc3, 100) end

separate

37

Hexapod robot

Hind legs have force sensors on feet and retraction limit switches

38

Hexapod locomotion

Alternating protraction and retraction of tripod pairs

 Begin protraction only if partner legs are down

 Depress legs only if partner legs have retracted

 Begin retraction when partner legs are up

Ganesh Ramanathan, Benjamin Morandi, IROS 2011

39

Hexapod coordination rules

R1: Protraction can start only if partner group on ground

R2.1: Protraction starts on completion of retraction

R2.2: Retraction starts on completion of protraction

R3: Retraction can start only when partner group raised

R4: Protraction can end only when partner group retracted

Dürr, Schmitz, Cruse: Behavior-based modeling of
hexapod locomotion: linking biology & technical
application, in Arthropod Structure &
Development, 2004

40

Sequential implementation

41

Multi-threaded implementation

42

SCOOP version

begin_protraction (partner, me: separate LEG_GROUP)

require

me legs_retracted

partner legs_down

not partner protraction_pending

do

tripod lift

me set_protraction_pending

end

43

Hexapod coordination rules

R1: Protraction can start only if partner group on ground

R2.1: Protraction starts on completion of retraction

R2.2: Retraction starts on completion of protraction

R3: Retraction can start only when partner group raised

R4: Protraction can end only when partner group retracted

Dürr, Schmitz, Cruse: Behavior-based modeling of
hexapod locomotion: linking biology & technical
application, in Arthropod Structure &
Development, 2004

44

Using preconditions for exclusive access

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- If enough funds, transfer amount from source to target.

do

if sourcebalance >= amount then

sourcewithdraw (amount)

targetdeposit (amount)

end

end

separate

transfer (Jane, Jill, 100)

transfer (Jane, Joan, 100)

45

Dining philosophers

class PHILOSOPHER create make feature

left, right: separate FORK

make (u, v: separate FORK) do left:= u ; right := v end

live

do

from until False loop

think ; eat (left, right)
end

end

eat (l, r: separate FORK) do leftpick ; rightpick ; … end

think do … end
end

require
l.picked
r.picked

46

To know more

SCOOP pages at

 http://cme.ethz.ch/scoop/

 https://www.eiffel.org/doc/solutions/Concurrent%20Eiff
el%20with%20SCOOP

http://cme.ethz.ch/scoop/
https://www.eiffel.org/doc/solutions/Concurrent Eiffel with SCOOP

