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Getting to Zurich HB from WEH D4

 Tram 6, 7 to Bahnhofstrasse/HB

 Tram 10 to Bahnhofplatz/HB

 Walk down on Weinbergstrasse to Central then to HB

 Walk down on Leonhard-Treppe to Walcheplatz to Walchebrücke to HB

 Bike down on Weinbergstrasse to Central, then to HB 

 ...

Each path offers different cost in terms of

 Time

 Convenience

 Crowdedness

 Ease

 ...

Path planning
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Path planning

Path planning: a collection of discrete motions between a start and a goal

Strategies

 Graph search

 Covert free space to a connectivity graph

 Apply a graph search algorithm to find a path to the goal

 Potential field planning

 Impose a mathematical function directly on the free space

 Follow the gradient of the function to get to the goal
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Configuration space

Configuration space C 

 A set of all possible configurations of a robot

 In mobile robots, configuration (pose) is represented by (x, y, θ)

 For a differential-drive robot, there are limited robot velocities in each 
configuration.

For path planning, assume that

 the robot is holonomic

 the robot has a point-mass

 Must inflate the obstacles in a map to compensate 
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Configuration space: point-mass robot

Free space

Obstacle
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Configuration space: circular robot

Free space

Obstacle
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Path planning: graph search

 Graph construction

 Visibility graph

 Voronoi diagram

 Exact cell decomposition

 Approximate cell decomposition

 Graph search

 Deterministic graph search

 Randomized graph search
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Graph construction
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Visibility graph

Goal

Start
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Visibility graph

Advantages

 Optimal path in terms of path length

 Simple to implement

Issues

 Number of edges and nodes increase with the number of obstacle 
polygons

 Fast in sparse environments, but slow and inefficient in densely 
populated environments

 Resulting path takes the robot as close as possible to obstacles

 A modification to the optimal solution is necessary to ensure 
safety

• Grow obstacles by radius much larger than robot’s radius

• Modify the solution path to be away from obstacles
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Voronoi diagram

Goal

Start
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Voronoi diagram

 For each point in free space, compute its distance to the nearest obstacle.

 At points that are equidistant to two or more obstacles, create ridge 
points.

 Connect the ridge points to create the Voronoi diagram
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Voronoi diagram

Advantages

 Maximize the distance between a robot and obstacles

 Keeps the robot as safe as possible

 Executability

 A robot with a long-range sensor can follow a Voronoi edge in 
the physical world using simple control rules: maximize the 
readings of local minima in the sensor values.

Issues

 Not the shortest path in terms of total path length.

 Robots with short-range sensor may fail to localize.
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Exact cell decomposition

Goal

Start
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Exact cell decomposition

Advantages

 In a sparse environment, the number of cells is small regardless of actual 
environment size.

 Robots can move around freely within a free cell.

Issues

 The number of cells depends on the destiny and complexity of obstacles 
in the environment
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Approximate cell decomposition

Variable-size cell decomposition

Goal

Start
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Approximate cell decomposition

Fixed-size cell decomposition

Start

Goal
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Approximate cell decomposition

Variable-size

 Recursively divide the space into rectangles unless

 A rectangle is completely occupied or completely free

 Stop the recursion when

 A path planner can compute a solution, or

 A limit on resolution is attained

Fixed-size

 Divide the space evenly

 The cell size is often independent of obstacles
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Approximate cell decomposition

Advantages

 Low computational complexity

Issues

 Narrow passage ways can be lost
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Connectivity
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Grid map inflation

Free space

Obstacle
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Graph search

Goal

Start

A

B

C

D

E

F

G
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Deterministic graph search

Convert the environment map into a connectivity graph

Find the best path (lowest cost) in the connectivity graph

 f(n): Expected total cost

f(n) = g(n) + ε h(n)

 g(n): Path cost

g(n) = g(n’) + c(n, n’)

 h(n): Heuristic cost

 ε: Weighting factor

 n: node/grid cell

 c(n, n’): edge traversal cost
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Breadth-first search

Goal

Start

A

B

C

D

E

F

G

Start

A D

B FE G

C C Goal

f(n) = g(n) where c(n, n’) = 1 
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Depth-first search

Goal

Start

A

B
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G

Start
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B E

C Goal

f(n) = g(n) where c(n, n’) = 1 
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Breadth-first search vs depth-first search

Breadth-first
 Expand all nodes in the order of 

proximity.

 All paths need to be stored.

 Finds a path has the fewest 
number of edges between the 
start and the goal.

 If all edges have the same cost, 
the solution path is the 
minimum-cost path.

Depth-first
 Expand each node up to the 

deepest level of the graph first.

 May revisit previously visited 
nodes or redundant paths.

 Reduction in space complexity: 
Only need to store a single path.
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Dijkstra’s algorithm

Goal

Start
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f(n) = g(n) + 0 * h(n)
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A* algorithm

Goal

Start
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A D
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f(n) = g(n) + h(n)
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A* algorithm

1. Mark the start node s “open” and calculate f(s).

2. Select the open node n whose value of f is smallest. Resolve ties 
arbitrarily, but always in favor of any node n ∈ T.

3. If n ∈ T, mark n “closed” and terminate the algorithm.

4. Otherwise:

1. Mark n closed and apply the successor operator Γ to n.

2. Calculate f for each successor of n and mark as “open” each 
successor not already marked “closed”. 

3. Remark as “open” any closed node ni which is a successor of n
and for which f(ni) is smaller now than it was when ni was 
marked closed. 

4. Go to step 2.
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A* algorithm: cost computation

Manhattan distance (4-connected path)

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost: c(n,n’) = 1

 Heuristic cost: h(n) = #x + #y

 #x = # of cells between n and goal in x-direction 

 #y = # of cells between n and goal in x-direction
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A* algorithm: cost computation

Diagonal distance (8-connected path): Case 1

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost: c(n,n’) = 1

 Heuristic cost: h(n) = max (#x, #y)

 #x = # of cells between n and goal in x-direction

 #y = # of cells between n and goal in y-direction
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A* algorithm: cost computation

Diagonal distance (8-connected path): Case 2

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost: 

c(n,n’) = 1 if n is north, south, east, west of n’

c(n,n’) = √2 if n is a diagonal neighbor of n’

 Heuristic cost: 

h(n) = (#y * √2 + #x - #y) if #x > #y

h(n) = (#x * √2 + #y - #x) if #x < #y

 #x = # of cells between n and goal in x-direction

 #y = # of cells between n and goal in y-direction
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A* algorithm: cost computation

Diagonal distance (8-connected path): Case 3

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost: 

c(n,n’) = Euclidean distance

 Heuristic cost: h(n) = √(dx*dx + dy*dy)

 dx = || n.x – goal.x ||

 dy = || n.y – goal.y ||
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A*: heuristic cost and speed 

 h(n) <= actual cost from n to goal 

 A* is guaranteed to find a shortest path. The lower h(n) is, the 
more node A* expands, making it slower.

 h(n) = 0, then we have Dijkstra’s algorithm

 h(n) = actual cost from n to goal 

 A* will only follow the best path and never expand anything else, 
making it very fast.

 h(n) > actual cost from n to goal

 A* is not guaranteed to find a shortest path, but it can run faster.

 h(n) >> g(n), then we have Greedy Best-First-Search: selects 
vertex closest to the goal



35

Dijkstra’s algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
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Greedy best-first search

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
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A* algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
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Data structures

ARRAY

LIST / LINKED_LIST / ARRAYED_LIST, etc.

QUEUE / ARRAYED_QUEUE / LINKED_QUEUE / PRIORITY_QUEUE, etc.

Valid index values

lower upper

1

item (4 )

2 3 4 5 6 7

put

remove

item

item

Cursor

forthback
index count1

finishstart

afterbefore
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Data structures

HASH_TABLE

 put:  Insert if there was no item with the given key, do nothing otherwise. 

 force: Always insert the item. Remove the item for the given key.

 extend: Faster intersion if you are sure there is no item with the given key.

 replace: Replace an already present item with the given key, and do 
nothing if there is none.
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Randomized graph search

http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html
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Randomized graph search

1. Initialize a tree.

2. Add nodes to the tree until a termination condition is triggered.

3. During each step:

1. Pick a random configuration qrand in the free space.

2. Compute the tree node qnear closest to qrand

3. Grow an edge (with a fixed length) from qnear to qrand

4. Add the end qnew of the edge if it is collision free
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Randomized graph search

Advantages

 Can address situations in which exhaustive search is not an option.

Issues

 Cannot guarantee solution optimality.

 Cannot guarantee deterministic completeness.

 If there is a solution, the algorithm will eventually find it as the number 
of nodes added to the tree grows to infinity.
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Path planning strategies

 Graph search

 Covert free space to a connectivity graph

 Apply graph search algorithm to find a path to the goal

 Potential field planning

 Impose a mathematical function directly on the free space

 Follow the gradient of the function to get to the goal
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Potential field

Create a gradient to direct the robot to the goal position

Main idea

 Robots are attracted toward the goal.

 Robots are repulsed by obstacles.

F(q) = - 𝛻U(q)

 F(q): artificial force acting on the robot at the position q = (x, y)

 U(q): potential field function

 𝛻U(q): gradient vector of U at position q 

 U(q) = Uattractive(q) + Urepulsive(q)

 F(q) = Fattractive(q) + Frepulsive(q) = - 𝛻Uattractive(q) - 𝛻Urepulsive(q)
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Attractive potential

Image from lecture notes by Benjamin Kuipers
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Repulsive potential

Image from lecture notes by Benjamin Kuipers
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Sum of two fields

Image from lecture notes by Benjamin Kuipers
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Resulting path

Image from lecture notes by Benjamin Kuipers
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Attractive potential

Uattractive(q) = 
1

2
kattrative ∙ ρ2

goal(q)

 kattrative: a positive scaling factor

 ρgoal(q): Euclidean distance ||q - qgoal|| 

Fattractive(q) = - 𝛻Uattractive(q)

= - kattrative ρgoal(q) 𝛻 ρgoal(q)

= - kattrative (q - qgoal)

 Linearly converges toward 0 as the robot reaches the goal
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Repulsive potential

Urepulsive(q) =  

1

2
krepulsive (

1

ρ(q)
−

1

ρ0
)2 ρ(q) ≤ ρ0

0 ρ(q) > ρ0

 krepulsive: a positive scaling factor

 ρ(q): minimum distance from q to an object

 ρ0: distance of influence of the object 

Frepulsive(q) = - 𝛻Urepulsive(q)

=  
krepulsive (

1

ρ(q)
−

1

ρ0
)

1

ρ2(q)
q − qobstacle

ρ(q)
ρ(q) ≤ ρ0

0 ρ(q) ≤ ρ0

 Only for convex obstacles that are piecewise differentiable 
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Potential field

Advantages

 Both plans the path and determines the control for the robot. 

 Smoothly guides the robot towards the goal.

Issues

 Local minima are dependent on the obstacle shape and size.

 Concave objects may lead to several minimal distances, which can cause 
oscillation


