E,H Ziirich

Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 7: Path Planning

Path planning

Getting to Zurich HB from WEH D4

» Tram 6, 7 to Bahnhofstrasse/HB

» Tram 10 to Bahnhofplatz/HB

» Walk down on Weinbergstrasse to Central then to HB

» Walk down on Leonhard-Treppe to Walcheplatz to Walchebriicke to HB

» Bike down on Weinbergstrasse to Central, then to HB
> ..

Each path offers different cost in terms of
» Time
» Convenience

» Crowdedness
» Ease
> ...

Path planning

Path planning: a collection of discrete motions between a start and a goal

Strategies
» Graph search
> Covert free space to a connectivity graph
> Apply a graph search algorithm to find a path to the goal

» Potential field planning
> Impose a mathematical function directly on the free space
> Follow the gradient of the function to get to the goal

Configuration space

Configuration space C
» A set of all possible configurations of a robot
» In mobile robots, configuration (pose) is represented by (x, y, 0)

» For a differential-drive robot, there are limited robot velocities in each
configuration.

For path planning, assume that
> the robot is holonomic
» the robot has a point-mass
> Must inflate the obstacles in a map to compensate

Configuration space: point-mass robot

Obstacle

Free space

Configuration space: circular robot

Free space

Path planning: graph search

» Graph construction
> Visibility graph
> Voronoi diagram
> Exact cell decomposition
>

Approximate cell decomposition

» Graph search
> Deterministic graph search
> Randomized graph search

Graph construction

Visibility graph

Start

Goal

Visibility graph

Advantages

» Optimal path in terms of path length
» Simple to implement

Issues

» Number of edges and nodes increase with the number of obstacle
polygons

> Fast in sparse environments, but slow and inefficient in densely
populated environments

» Resulting path takes the robot as close as possible to obstacles

> A modification to the optimal solution is necessary to ensure
safety

* Grow obstacles by radius much larger than robot’s radius
* Modify the solution path to be away from obstacles

10

Voronoi diagram

Start

(
N\

7

N

N\

Goal

11

Voronoi diagram ©

» For each point in free space, compute its distance to the nearest obstacle.

» At points that are equidistant to two or more obstacles, create ridge
points.

» Connect the ridge points to create the Voronoi diagram

12

Voronoi diagram

Advantages

» Maximize the distance between a robot and obstacles
> Keeps the robot as safe as possible
» Executability

> A robot with a long-range sensor can follow a Voronoi edge in
the physical world using simple control rules: maximize the
readings of local minima in the sensor values.

Issues

» Not the shortest path in terms of total path length.
» Robots with short-range sensor may fail to localize.

13

Exact cell decomposition

Start

Goal

Q\

14

Exact cell decomposition O,

Advantages

» In a sparse environment, the number of cells is small regardless of actual
environment size.

» Robots can move around freely within a free cell.

Issues

» The number of cells depends on the destiny and complexity of obstacles
in the environment

15

Approximate cell decomposition

Goal

Start

Variable-size cell decomposition

16

Approximate cell decomposition

Goal

Sta

It

Fixed-size cell decomposition

17

Approximate cell decomposition

Variable-size
» Recursively divide the space into rectangles unless

> A rectangle is completely occupied or completely free
» Stop the recursion when

> A path planner can compute a solution, or

> A limit on resolution is attained

Fixed-size
» Divide the space evenly

> The cell size is often independent of obstacles

18

Approximate cell decomposition

Advantages
» Low computational complexity

Issues

» Narrow passage ways can be lost

19

Connectivity

di|n2|d2

ni| ¢ [n3
d4n4|d3

Four-connected Eight-connected

d1 n2 d2

d4 n4 ds3

Grid map inflation

Free space

21

Graph search

@)

Start

22

Deterministic graph search

Convert the environment map into a connectivity graph
Find the best path (lowest cost) in the connectivity graph

» f(n): Expected total cost
f(n) = g(n) + € h(n)

» g(n): Path cost
g(n) = g(n’) + c(n, n’)

» h(n): Heuristic cost

» €: Weighting factor

» n:node/grid cell

» c(n, n’): edge traversal cost

23

Breadth-first search

Start

f(n) = g(n) where c¢(n, n’) =1

24

Depth-first search

C

Start

f(n) = g(n) where c¢(n, n’) =1

Start

Goal

25

Breadth-first search vs depth-first search

Breadth-first

» Expand all nodes in the order of
proximity.
» All paths need to be stored.

» Finds a path has the fewest
number of edges between the
start and the goal.

> If all edges have the same cost,
the solution path is the
minimum-cost path.

Depth-first

>

>

Expand each node up to the
deepest level of the graph first.

May revisit previously visited
nodes or redundant paths.
Reduction in space complexity:

Only need to store a single path.

26

Dijkstra’s algorithm

Start

f(n) = g(n) + o * h(n)

27

A* algorithm

Start

f(n) = g(n) + h(n)

Start

a—0O

Goal

28

A* algorithm

1. Mark the start node s “open” and calculate f{s).

2. Select the open node n whose value of fis smallest. Resolve ties
arbitrarily, but always in favor of any node n € T.

3. Ifn € T, mark n “closed” and terminate the algorithm.

4. Otherwise:
1. Mark n closed and apply the successor operator I' to n.

2. Calculate ffor each successor of n and mark as “open” each
successor not already marked “closed”.

« » o .
3. Remark as “open” any closed node n; which is a successor of n
and for which f{n,) is smaller now than it was when n; was
marked closed.

4. Go to step 2.

29

A* algorithm: cost computation

Manhattan distance (4-connected path)
» Path cost g(n) = g(n’) + c(n,n’)

» Edge traversal cost: c¢(n,n’) =1

» Heuristic cost: h(n) = #x + #y

> #x =# of cells between n and goal in x-direction
> #y =# of cells between n and goal in x-direction

30

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 1
» Path cost g(n) = g(n’) + c(n,n’)

» Edge traversal cost: c¢(n,n’) =1

» Heuristic cost: h(n) = max (#x, #y)

> #x =# of cells between n and goal in x-direction
> #y =# of cells between n and goal in y-direction

31

A* algorithm: cost computation O,

Diagonal distance (8-connected path): Case 2
» Path cost g(n) = g(n’) + c(n,n’)

» Edge traversal cost:
c(n,n’) =1if n is north, south, east, west of n’

c(n,n’) = V2 if n is a diagonal neighbor of n’

» Heuristic cost:
h(n) = (#y * V2 + #x - #y) if #x > #y
h(n) = (#x * V2 + #y - #x) if #x < #y
> #x = # of cells between n and goal in x-direction

> #y = # of cells between n and goal in y-direction

32

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 3
» Path cost g(n) = g(n’) + c(n,n’)

» Edge traversal cost:

c(n,n’) = Euclidean distance

> Heuristic cost: h(n) = V(dx*dx + dy*dy)
> dx = || n.x - goal.x ||
> dy=|| ny-goaly |

33

A*: heuristic cost and speed

» h(n) <= actual cost from n to goal

> A* is guaranteed to find a shortest path. The lower h(n) is, the
more node A* expands, making it slower.

> h(n) = o, then we have Dijkstra’s algorithm

» h(n) = actual cost from n to goal

> A* will only follow the best path and never expand anything else,
making it very fast.

» h(n) > actual cost from n to goal

> A*is not guaranteed to find a shortest path, but it can run faster.

> h(n) >> g(n), then we have Greedy Best-First-Search: selects
vertex closest to the goal

34

Dijkstra’s algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

35

Greedy best-first search

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

36

A* algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

37

Data structures ©

ARRAY lower item (4) upper
1 2 3 4 5 6 7
< >

Valid index values

LIST / LINKED_LIST / ARRAYED_LIST, etc.

— before after —3
T back index - rth COfnt
«— —
start Cursor finish

QUEUE / ARRAYED_QUEUE / LINKED_QUEUE / PRIORITY_QUEUE, etc.
put — item

I—> rermmove

Data structures ©

HASH_TABLE
26 [— | "Zoia"
[> "vur"
o
®
4 ¥ "Denis"
3 = I'Caroline"
2 L1 »=I"Bertrand"
1 = "Annie"

YV V V V

put: Insert if there was no item with the given key, do nothing otherwise.
force: Always insert the item. Remove the item for the given key.
extend: Faster intersion if you are sure there is no item with the given key.

replace: Replace an already present item with the given key, and do
nothing if there is none.

39

Randomized graph search

http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html

40

Randomized graph search

1. Initialize a tree.

2. Add nodes to the tree until a termination condition is triggered.

3. During each step:
1. Pick a random configuration q,,4 in the free space.
2. Compute the tree node q,,.., closest to q,,,4
3. Grow an edge (with a fixed length) from q,.,. to q,,,.q
4. Add the end g, of the edge if it is collision free

41

Randomized graph search

Advantages

» (Can address situations in which exhaustive search is not an option.

Issues

» Cannot guarantee solution optimality.

» Cannot guarantee deterministic completeness.

» If there is a solution, the algorithm will eventually find it as the number
of nodes added to the tree grows to infinity.

42

Path planning strategies

» Graph search
> Covert free space to a connectivity graph
> Apply graph search algorithm to find a path to the goal

» Potential field planning
> Impose a mathematical function directly on the free space

> Follow the gradient of the function to get to the goal

43

Potential field

Create a gradient to direct the robot to the goal position

Main idea
» Robots are attracted toward the goal.
» Robots are repulsed by obstacles.

F(q) =- VU(q)

» F(q): artificial force acting on the robot at the position q = (x, y)
» U(q): potential field function
» VU(q): gradient vector of U at position q

» U(q) = Uattractive(q) + Urepulsive(q)
» F(q) = Fattractive(q) + Frepulsive(q) =T VUattractive(q) - VUrepulsive(q)

44

Attractive potential

[e T e M Ty e ™M e Y
[T e T e e e T e T

e a—a— s = = -

| 2w - -

I T I I L N
- T T F AR T
| > T AFAFTRAFT]F

fffff

T

T e T Tl T e =1

T T Tk e -

| S T ® = 3 x

—T _r wr - a

T VIV ¥ i v e
e e e Y Y AR
EARARRER AR EER I ey
Pa ettt e e e i Y Y LA E S o w]
N R N N NERrErre
e e e e Y Y e
et M N N Y Yy Y e e
e m e e e N N M N N g gy
e e N N N N Y e a a
o a

P T -l ol
N -l ol il ant Sl . o oy
= e~ e~ L e L

Ll S T o g e e e]

il - e T e e S

- r e A A
- +~ &+ 3+ 3 —m—u o= =

o oA e - -]

o W m W W W e

L R it i e e, i, S

T T i e ity D
Eoh o R R R R e e e |
R R R R R R R R R R

L v
IR S i A AN LR R R R R R e v w
| > g A FAFAREL] LR ORRR R R R R v R v v v
BN bR R R R R R R R R v w v
EEESEN SN NN RO R R R R R R R R R % n
mmmaammuamﬁﬁﬂm bR R R R R R R R R R
AR AR AN TR RN OROR RS AR R W
EF SV NN R LR R R R R R R
BN | WO ORR R R R R W v g
AZAARFPAFIET AR LLNSN

45

Image from lecture notes by Benjamin Kuipers

Repulsive potential

A S . R SR

f

T L L I |

AR o e e - L
-"'dr"".r"f.-".-i'.ﬂ.d.-ra.
-"ﬁ.-'"".-".-?.-ﬂ'.-'_m_--_.-.

- e TR

. L L

I

t
t
)
f
t
t
f

L
P e
L

L A T

L A
I.i'.u".."..-"..-"..'..-..-.
r.ll'r"..-"'..-"'..-"..f..-..--
.’.u’..-"..-'""..-"..-"..-r..-a-.-.
.'I..n’#..-"#..-"’..-"..-v'..-!.u-.-.-..
J':I‘..-"ﬂ..-""'..-""..ﬂ_.-..—..-_.-__

T A o m m - .

|
}
|
+
)

e em s
o w TR e e w = s
Yo e e
R
RN
R
IR

I TR I I T

LI T T

LT R B

Image from lecture notes by Benjamin Kuipers

46

Sum of two fields

T A L L U S S T TN T T S G
”ﬂw‘“ﬁ"*‘&m’m’“—mﬁ%‘hﬁﬁn e T L - o

a8 [[-
I R R Lo e

T e e N R R N N
-ﬁffﬁﬁﬂﬁﬁW L N AR B R RS T

o A AAPPT IR Y

SR AL AR

AR AP PR iR

NYEIES YA AR SRR
ap ﬁ A AR

fHF A0 PRRN

A A0 VRRR

Pt /x“'f:" 1'1‘1‘&'&

MERR RN st AR R
RN LA AT SERRRER

AR L Mﬁﬁxﬂfﬂfr‘da’ \ | PR R

r'-'ffs_‘“_-wgfﬂ-frﬁfﬂrﬁf . | ﬂ.!.l.ql*;-

PR e e mreememm A A A ,| ;(‘:.i'i.

4|3_fafﬂfﬂﬂﬁﬁﬁﬂf'ﬁfﬂfﬂfﬂfﬁff; 1 ﬁ|.a|_
fﬂfﬂ:ﬂ-.ﬁﬂﬂﬂﬁﬁfﬂ.ﬁfﬁ; 1 i q-I.Elﬁ.

ff!ﬁfﬂ#ﬂ;#ﬂfﬁffﬁﬂf‘ ! ﬁ‘un:.

;’s"s‘fﬂﬁ.—*.—*ﬁﬂ.—”ﬁ:"f‘fr’?f "

’ﬁffﬂfﬁﬁﬁﬂﬂfﬁﬁffu!ff: 'i‘i.

40 45 2l

n
on

Image from lecture notes by Benjamin Kuipers

&

G5

a7

Resulting path

SG EEE R R T Y i
e e R A R R

[a e T M T e T e T e T e PN R
Pl g A i e T e e e Y .e'."..:".:"‘__,.:".:".:".r".r

et ot a e A e e e e e e e e A i
[t o g e e e e ey e e ey Yy Pl a e
[R g N T Ty T L Ty J;{J{f{fffff
[T e ey Ty T T Ty r;ff{]
foactoatombe b bt s s gl g i I .r".r"r".r'-"-"
[l e g g g g i T T, g g Y Ty Y g e A A]
4 PR i e i e e e e e T e e Yy P
e abato b gt g e T Ty E Ejffiffff??TTT*bH

kR Rl AT S
L'BL BN B [} d g

ol

LR ke e |
et maL s

ek e T

IF
.-‘.-"E
£y

e

b
3
b3
*
l.l
Ly oy A A A A A A BT #
FEEEFEE YL E AF
4 P A A A A 2 sog
A A i i gl .-..n.-.--.-.-'.-*.-‘.-' r
E E

o
>

L L AR T dasarsxdmae st
L P 0 o o o el om Fadrmmn Ao
o e G T B T
o o T T A T R
.-".-"'.-"'.-".‘.-"'..-"'.-"'.-"'.-"'::." “::
e o A
.?EQIJFHHH

Hﬁhh

B [ey T R

[e e e
el wt e i s

A A
o A A ...-: E::'

o A B A
Tt A Ay A R
L

FErEFrr I ErE L ERFS Ry ety
e el Al O il A AT

Ny L LA LN

LA O o ol o A AT

Belabeleiele el h B R L LT
BLLEELLEEELE R LK
e e e e e e

B EE R E R R Rl

IF
=
:
:
'
l_l
l_l
A
2
l’
;

™ e e T
-..‘-h*-..*-..‘-ﬁ*..&k.*:.

A E T AR A E R R A Y
LEEELEE R L E Y
g

:
x
r
z
l_l'
L
Fy
;

.
i
)
,‘:
|"
x
-
A

E ER LR E RN,
(S s T

a &l 7a
Image from lecture notes by Benjamin Kuipers

&

Attractive potential

1
Uattractive(q) ~5 kattrative) ngoal(q)

» K iave: @ pOsitive scaling factor

> Pgoal(@): Euclidean distance ||q - qgqy|

Fattractive(q) = VUattractive(q)
=" kattlrative pgoal(q) v pgoal(q)
=" kattlrative (q B qgoal)

» Linearly converges toward o as the robot reaches the goal

49

Repulsive potential

1 k) (_1 _ 1)2
Upeputsive(@) =1 27 p(@) Po
0
> Kiepuisive: @ POsitive scaling factor

» p(q): minimum distance from q to an object
> p,: distance of influence of the object

Frepulsive(q) =" VUrepulsive(q)

y
k

0
\

(1 _i) 1 q - qobstacle
.y repulsive p(q) P, pz(q) p(q)

p(q) < p,
p(q) > p,

p(q) < p,
p(q) < p,

» Only for convex obstacles that are piecewise differentiable

50

Potential field “

Advantages

» Both plans the path and determines the control for the robot.
» Smoothly guides the robot towards the goal.

Issues

» Local minima are dependent on the obstacle shape and size.

» Concave objects may lead to several minimal distances, which can cause
oscillation

51

