
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 7: Path Planning

2

Getting to Zurich HB from WEH D4

 Tram 6, 7 to Bahnhofstrasse/HB

 Tram 10 to Bahnhofplatz/HB

 Walk down on Weinbergstrasse to Central then to HB

 Walk down on Leonhard-Treppe to Walcheplatz to Walchebrücke to HB

 Bike down on Weinbergstrasse to Central, then to HB

 ...

Each path offers different cost in terms of

 Time

 Convenience

 Crowdedness

 Ease

 ...

Path planning

3

Path planning

Path planning: a collection of discrete motions between a start and a goal

Strategies

 Graph search

 Covert free space to a connectivity graph

 Apply a graph search algorithm to find a path to the goal

 Potential field planning

 Impose a mathematical function directly on the free space

 Follow the gradient of the function to get to the goal

4

Configuration space

Configuration space C

 A set of all possible configurations of a robot

 In mobile robots, configuration (pose) is represented by (x, y, θ)

 For a differential-drive robot, there are limited robot velocities in each
configuration.

For path planning, assume that

 the robot is holonomic

 the robot has a point-mass

 Must inflate the obstacles in a map to compensate

5

Configuration space: point-mass robot

Free space

Obstacle

6

Configuration space: circular robot

Free space

Obstacle

7

Path planning: graph search

 Graph construction

 Visibility graph

 Voronoi diagram

 Exact cell decomposition

 Approximate cell decomposition

 Graph search

 Deterministic graph search

 Randomized graph search

8

Graph construction

9

Visibility graph

Goal

Start

10

Visibility graph

Advantages

 Optimal path in terms of path length

 Simple to implement

Issues

 Number of edges and nodes increase with the number of obstacle
polygons

 Fast in sparse environments, but slow and inefficient in densely
populated environments

 Resulting path takes the robot as close as possible to obstacles

 A modification to the optimal solution is necessary to ensure
safety

• Grow obstacles by radius much larger than robot’s radius

• Modify the solution path to be away from obstacles

11

Voronoi diagram

Goal

Start

12

Voronoi diagram

 For each point in free space, compute its distance to the nearest obstacle.

 At points that are equidistant to two or more obstacles, create ridge
points.

 Connect the ridge points to create the Voronoi diagram

13

Voronoi diagram

Advantages

 Maximize the distance between a robot and obstacles

 Keeps the robot as safe as possible

 Executability

 A robot with a long-range sensor can follow a Voronoi edge in
the physical world using simple control rules: maximize the
readings of local minima in the sensor values.

Issues

 Not the shortest path in terms of total path length.

 Robots with short-range sensor may fail to localize.

14

Exact cell decomposition

Goal

Start

15

Exact cell decomposition

Advantages

 In a sparse environment, the number of cells is small regardless of actual
environment size.

 Robots can move around freely within a free cell.

Issues

 The number of cells depends on the destiny and complexity of obstacles
in the environment

16

Approximate cell decomposition

Variable-size cell decomposition

Goal

Start

17

Approximate cell decomposition

Fixed-size cell decomposition

Start

Goal

18

Approximate cell decomposition

Variable-size

 Recursively divide the space into rectangles unless

 A rectangle is completely occupied or completely free

 Stop the recursion when

 A path planner can compute a solution, or

 A limit on resolution is attained

Fixed-size

 Divide the space evenly

 The cell size is often independent of obstacles

19

Approximate cell decomposition

Advantages

 Low computational complexity

Issues

 Narrow passage ways can be lost

20

Connectivity

Four-connected Eight-connected

d4 n4

n1

d1

c

n2

d3

n3

d2

n1

n2

c

n4

n3

d1 d2

d4 d3

n1

n2

c

n4

n3

d1 d2

d4 d3

21

Grid map inflation

Free space

Obstacle

22

Graph search

Goal

Start

A

B

C

D

E

F

G

23

Deterministic graph search

Convert the environment map into a connectivity graph

Find the best path (lowest cost) in the connectivity graph

 f(n): Expected total cost

f(n) = g(n) + ε h(n)

 g(n): Path cost

g(n) = g(n’) + c(n, n’)

 h(n): Heuristic cost

 ε: Weighting factor

 n: node/grid cell

 c(n, n’): edge traversal cost

24

Breadth-first search

Goal

Start

A

B

C

D

E

F

G

Start

A D

B FE G

C C Goal

f(n) = g(n) where c(n, n’) = 1

25

Depth-first search

Goal

Start

A

B

C

D

E

F

G

Start

A

B E

C Goal

f(n) = g(n) where c(n, n’) = 1

26

Breadth-first search vs depth-first search

Breadth-first
 Expand all nodes in the order of

proximity.

 All paths need to be stored.

 Finds a path has the fewest
number of edges between the
start and the goal.

 If all edges have the same cost,
the solution path is the
minimum-cost path.

Depth-first
 Expand each node up to the

deepest level of the graph first.

 May revisit previously visited
nodes or redundant paths.

 Reduction in space complexity:
Only need to store a single path.

27

Dijkstra’s algorithm

Goal

Start

A

B

C

D

E

F

G

f(n) = g(n) + 0 * h(n)

Start

A D

B FE G

C Goal

28

A* algorithm

Goal

Start

A

B

C

D

E

F

G

Start

A D

G

Goal

f(n) = g(n) + h(n)

29

A* algorithm

1. Mark the start node s “open” and calculate f(s).

2. Select the open node n whose value of f is smallest. Resolve ties
arbitrarily, but always in favor of any node n ∈ T.

3. If n ∈ T, mark n “closed” and terminate the algorithm.

4. Otherwise:

1. Mark n closed and apply the successor operator Γ to n.

2. Calculate f for each successor of n and mark as “open” each
successor not already marked “closed”.

3. Remark as “open” any closed node ni which is a successor of n
and for which f(ni) is smaller now than it was when ni was
marked closed.

4. Go to step 2.

30

A* algorithm: cost computation

Manhattan distance (4-connected path)

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost: c(n,n’) = 1

 Heuristic cost: h(n) = #x + #y

 #x = # of cells between n and goal in x-direction

 #y = # of cells between n and goal in x-direction

31

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 1

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost: c(n,n’) = 1

 Heuristic cost: h(n) = max (#x, #y)

 #x = # of cells between n and goal in x-direction

 #y = # of cells between n and goal in y-direction

32

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 2

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost:

c(n,n’) = 1 if n is north, south, east, west of n’

c(n,n’) = √2 if n is a diagonal neighbor of n’

 Heuristic cost:

h(n) = (#y * √2 + #x - #y) if #x > #y

h(n) = (#x * √2 + #y - #x) if #x < #y

 #x = # of cells between n and goal in x-direction

 #y = # of cells between n and goal in y-direction

33

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 3

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost:

c(n,n’) = Euclidean distance

 Heuristic cost: h(n) = √(dx*dx + dy*dy)

 dx = || n.x – goal.x ||

 dy = || n.y – goal.y ||

34

A*: heuristic cost and speed

 h(n) <= actual cost from n to goal

 A* is guaranteed to find a shortest path. The lower h(n) is, the
more node A* expands, making it slower.

 h(n) = 0, then we have Dijkstra’s algorithm

 h(n) = actual cost from n to goal

 A* will only follow the best path and never expand anything else,
making it very fast.

 h(n) > actual cost from n to goal

 A* is not guaranteed to find a shortest path, but it can run faster.

 h(n) >> g(n), then we have Greedy Best-First-Search: selects
vertex closest to the goal

35

Dijkstra’s algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

36

Greedy best-first search

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

37

A* algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

38

Data structures

ARRAY

LIST / LINKED_LIST / ARRAYED_LIST, etc.

QUEUE / ARRAYED_QUEUE / LINKED_QUEUE / PRIORITY_QUEUE, etc.

Valid index values

lower upper

1

item (4)

2 3 4 5 6 7

put

remove

item

item

Cursor

forthback
index count1

finishstart

afterbefore

39

Data structures

HASH_TABLE

 put: Insert if there was no item with the given key, do nothing otherwise.

 force: Always insert the item. Remove the item for the given key.

 extend: Faster intersion if you are sure there is no item with the given key.

 replace: Replace an already present item with the given key, and do
nothing if there is none.

40

Randomized graph search

http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html

41

Randomized graph search

1. Initialize a tree.

2. Add nodes to the tree until a termination condition is triggered.

3. During each step:

1. Pick a random configuration qrand in the free space.

2. Compute the tree node qnear closest to qrand

3. Grow an edge (with a fixed length) from qnear to qrand

4. Add the end qnew of the edge if it is collision free

42

Randomized graph search

Advantages

 Can address situations in which exhaustive search is not an option.

Issues

 Cannot guarantee solution optimality.

 Cannot guarantee deterministic completeness.

 If there is a solution, the algorithm will eventually find it as the number
of nodes added to the tree grows to infinity.

43

Path planning strategies

 Graph search

 Covert free space to a connectivity graph

 Apply graph search algorithm to find a path to the goal

 Potential field planning

 Impose a mathematical function directly on the free space

 Follow the gradient of the function to get to the goal

44

Potential field

Create a gradient to direct the robot to the goal position

Main idea

 Robots are attracted toward the goal.

 Robots are repulsed by obstacles.

F(q) = - 𝛻U(q)

 F(q): artificial force acting on the robot at the position q = (x, y)

 U(q): potential field function

 𝛻U(q): gradient vector of U at position q

 U(q) = Uattractive(q) + Urepulsive(q)

 F(q) = Fattractive(q) + Frepulsive(q) = - 𝛻Uattractive(q) - 𝛻Urepulsive(q)

45

Attractive potential

Image from lecture notes by Benjamin Kuipers

46

Repulsive potential

Image from lecture notes by Benjamin Kuipers

47

Sum of two fields

Image from lecture notes by Benjamin Kuipers

48

Resulting path

Image from lecture notes by Benjamin Kuipers

49

Attractive potential

Uattractive(q) =
1

2
kattrative ∙ ρ2

goal(q)

 kattrative: a positive scaling factor

 ρgoal(q): Euclidean distance ||q - qgoal||

Fattractive(q) = - 𝛻Uattractive(q)

= - kattrative ρgoal(q) 𝛻 ρgoal(q)

= - kattrative (q - qgoal)

 Linearly converges toward 0 as the robot reaches the goal

50

Repulsive potential

Urepulsive(q) =

1

2
krepulsive (

1

ρ(q)
−

1

ρ0
)2 ρ(q) ≤ ρ0

0 ρ(q) > ρ0

 krepulsive: a positive scaling factor

 ρ(q): minimum distance from q to an object

 ρ0: distance of influence of the object

Frepulsive(q) = - 𝛻Urepulsive(q)

=
krepulsive (

1

ρ(q)
−

1

ρ0
)

1

ρ2(q)
q − qobstacle

ρ(q)
ρ(q) ≤ ρ0

0 ρ(q) ≤ ρ0

 Only for convex obstacles that are piecewise differentiable

51

Potential field

Advantages

 Both plans the path and determines the control for the robot.

 Smoothly guides the robot towards the goal.

Issues

 Local minima are dependent on the obstacle shape and size.

 Concave objects may lead to several minimal distances, which can cause
oscillation

