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Perception

Given visual input, understand the information the input contains

 Object location: object detection 

 Type of object: object classification

 Exact object name: object recognition 

 Overall scene: scene understanding

http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html#Caltech

car
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Type of data

Disparity map

RGBD data

Range data

Laser data

Camera image
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Structured light

Carmine 1.09

 Operating range: 0.35 m – 1.4 m

 Spatial resolution: 0.9 mm at 0.5m

 Depth resolution: 0.1 cm at 0.5m 
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Structured light
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Segmentation

Segmentation: decomposition of an image into consistent regions

 Data that belong to the same region have similar properties

 Similar color, texture, surface normal, etc.

 Data that belong to different regions have different properties

 Different color, texture, surface normal, etc.

 Segmentation as clustering

 Partitioning: divide an image into coherent regions 

 Grouping: group together elements of similar properties
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Image segmentation

 Divide an image into sensible regions using pixel intensity, color, texture, 

etc.

 Background subtraction

 Clustering

 Graph-based
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Background subtraction

http://vip.bu.edu/files/2010/02/FDR_FPR_control_comparison1-594x636.jpg
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Background subtraction

 Subtract an estimate of the appearance of the background from the 

image

 Consider areas of large absolute difference to be foreground

Issues

 Obtaining a good estimate of the background is non-trivial

 Changes in environment, lighting, weather, etc.

 Use a moving average

 Threshold
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Agglomerative clustering

 Consider each data point as a cluster

 Recursively merge the clusters with the smallest inter-cluster distance 

until the result is satisfactory
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Agglomerative clustering

http://www.cse.buffalo.edu/~jcorso/r/files/multilevel_square.png
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Agglomerative clustering

Issues

 Inter-cluster distance

 Distance between closest elements

 Distance between farthest elements

 Average distance between elements

 Number of clusters
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K-means clustering

 Choose k data points as seed points

 Recursively assign each data point to the cluster whose center is the 

closest and recalculate the cluster mean until the center does not change

 Minimize the within cluster sum of squares

 Tries to produce k clusters of equal size
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K-means clustering

http://en.wikipedia.org/wiki/Segmentation_(image_processing)
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K-means clustering

Issues

 Segments are not connected in image

 Using pixel coordinates would break up large regions

 Determining k is non-trivial
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Efficient graph-based image segmentation

 Represent image as a graph, each pixel being a node of a graph

 Edges are formed between neighboring pixels 

 Merge the nodes such that nodes belonging to the same segment more 

similar to one another than nodes at the boundary of two segments
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Efficient graph-based image segmentation

 Internal difference of a cluster c:

 𝐼𝑛𝑡 𝐶 = max
𝑒𝜖𝑀𝑆𝑇(𝐶,𝐸)

𝑤(𝑒)

 Difference between clusters c1, c2: 

 𝐷𝑖𝑓 𝐶1, 𝐶2 = min
𝑣𝑖𝜖𝐶1,𝑣𝑗𝜖𝐶2, 𝑣𝑖,𝑣𝑗 ∈𝐸

𝑤( 𝑣𝑖 , 𝑣𝑗 )

 Minimum internal difference:

 𝑀𝐼𝑛𝑡 𝐶1, 𝐶2 = min(𝐼𝑛𝑡 𝐶1 + 𝜏 𝐶1 , 𝐼𝑛𝑡 𝐶2 + 𝜏 𝐶2 )

 𝜏 𝐶 =
𝑘

|𝐶|

 A boundary exists between c1 and c2 if  𝐷𝑖𝑓 𝐶1, 𝐶2 > 𝑀𝐼𝑛𝑡 𝐶1, 𝐶2
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Efficient graph-based image segmentation

Felzenszwalb, P. and Huttenlocher, D. 2004. “Efficient Graph-Based Image Segmentation”

International Journal of Computer Vision, Volume 59, Number 2.
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Efficient graph-based image segmentation

 Regions of consistent properties are grouped together

Issues

 Number and quality of segments depend on the parameter k, smoothing 

factor , and minimum number of nodes
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Range data segmentation

 Generally, we can use image segmentation algorithms by replacing 

intensity, color, or texture by depth, surface normal, etc.

Surface normal computation

𝒙𝑢 ≡  𝜕𝒙
𝜕𝑢

𝒙𝑣 ≡  𝜕𝒙
𝜕𝑣

𝑁 =
1

𝒙𝑢 × 𝒙𝑣
(𝒙𝑢 × 𝒙𝑣)
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Ground segmentation

http://www-personal.acfr.usyd.edu.au/p.morton/media/img/data_ground.png
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Ground segmentation

 Extract all points below a certain height

Issues

 Data are noisy

 Objects will also lose information

 Wall cannot be segmented out

 Ground is not always planar
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Plane segmentation

http://kos.informatik.uni-osnabrueck.de/icar2013/segmentation.png
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Plane segmentation

 Find a plane that minimize the average distance between a set of points 

and the surface

 Recursively merge the surface patches

Issues

 Not every object is planar

 Curved objects will be segmented into several segments
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Feature extraction

Feature: a piece of information relevant for solving a computational task, 

e.g., locating an object in an image

 Raw data

 Histogram

 Pyramid of histograms

 Shape
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Histogram

 Compute a histogram of intensity or color

 Compute the correlation between example and test

Issues

 Loss of the structural information

 Dimensionality
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Scale Invariant Feature Transform

Lowe, D. 1999. “Object recognition from local scale-invariant features”. Proceedings of ICCV.
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Scale Invariant Feature Transform (SIFT)

 Identify locations and scales that are identifiable from different views of 

the same object

 L(x, y, σ) = G(x, y, σ) * I(x, y)

 D(x, y, σ) = L(x, y, kσ) - L(x, y, σ)

 Detect extrema (local minimum or maximum)
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Scale Invariant Feature Transform

 Remove points of low contrast or poorly localized on an edge

 Orientation assignment

𝑚 𝑥, 𝑦 = (𝐿 𝑥 + 1, 𝑦 − 𝐿 𝑥 − 1, 𝑦 )2 + (𝐿 𝑥, 𝑦 + 1 − 𝐿 𝑥, 𝑦 − 1 )2

𝜃 𝑥, 𝑦 = tan−1
𝐿 𝑥, 𝑦 + 1 − 𝐿 𝑥, 𝑦 − 1

𝐿 𝑥 + 1, 𝑦 − 𝐿 𝑥 − 1, 𝑦

 Create a keypoint descriptor: 16 histograms (4x4 grid), each with 8 

orientation bins, containing a total of 128 elements.
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Histogram of Oriented Gradient

 Divide the image into small rectangular or radial cells 

 Each cell accumulates a weighted local 1-D histogram of gradient 

directions over the pixels of the cell

 Normalize each cell by the energy over larger regions
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Shape factor

 Compute eigenvectors: λ1, λ2, λ3

 Point/Spherical: λ1 ≈ λ2 ≈ λ3

 Planar: λ1 ≈ λ2 » λ3

 Elongated: λ1 » λ2 ≈ λ3

Issues

 Many different objects have similar shape factor

 Shape factor of an object can depend on the point of view
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Tensor voting

 2x2 or 3x3 matrix that captures both the orientation information and its 

confidence/saliency

 Shape defines the type of information (point, surface, etc.)

 Size represents the saliency

 Each token is first decomposed into the basis tensors, and then 

broadcasts its information to its neighbors. 

Medioni, G., Lee, M., Tang. C. 2000. A Computational Framework for Segmentation and Grouping.
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Tensor voting

 The magnitude of the vote decays with distance and curvature:

𝑉 𝑑, 𝜌 = 𝑒
−
𝑑2+𝑐𝜌2

𝜎2

 d is the distance along the smooth path

 ρ is the curvature of the path

 c controls the degree of decay

 σ controls the size of the voting neighborhood

 Accumulate the votes by adding the matrices

 Analyze the tensor by eigen decomposition
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Spin image

Johnson, A., Herbert, M., 1999. “Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, (5).
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Spin image
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Spin image

 Collect a histogram of points

 The resolution of the histogram

 The size of the histogram

 To compare two spin images P and Q

 Compute the correlation between two images

𝑅 𝑃, 𝑄 =
𝑁 𝑝𝑖𝑞𝑖 −  𝑝𝑖  𝑞𝑖

(𝑁 𝑝𝑖
2 − ( 𝑝𝑖)

2 )(𝑁 𝑞𝑖
2 − ( 𝑞𝑖)

2 )

 Can also apply PCA, remove the mean spin image and compute 

the Euclidean norm
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Classifier

 Take a set of labeled examples

 Determine a rule that assign a label to any new example using the 

labeled examples

 Training dataset (xi, yi)

 xi: measurements of the properties of objects

 yi: label 

 Goal: given a new, plausible x, assign it a label y. 
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Bayes classifier

p( k | x ) = 
p( x | k ) p( k )

p( x )
∝ p( x | k ) p( k )

Given x

 Assign label k to x if 

 p( k | x ) > p( i | x ) for all i ≠ k and p( k | x ) > threshold

 Assign a random k label between k1, …, kj if 

 p( k1 | x ) = … = p( kj | x ) > p( i | x ) for all i ≠ k

 Do not assign a label if 

 p( k | x ) > p( i | x ) for all i ≠ k and p( k | x ) ≤ threshold
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Strategies

 Modeling probability explicitly

 Determining decision boundaries directly
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Nearest neighbor classifier

Given x

 Determine M training example that are nearest: x1, …, xM

 Determine class k that has the largest representation n in the set

 Assign label k to x if n > threshold

 Assign no label otherwise
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Support Vector Machine

 Find a hyperplane that maximizes the margin between the positive and 

negative examples

 𝒘 ∙ 𝒙𝒊 + 𝑏 ≥ 1 : positive 𝒙𝒊

 𝒘 ∙ 𝒙𝒊 + 𝑏 ≤ -1 : negative 𝒙𝒊

 𝒘 ∙ 𝒙𝒊 + 𝑏 = 1 or -1 : support vectors

 Classify a point: 𝑓 𝒙 = sign 𝒘 ∙ 𝒙 + 𝑏

 For multiclass classification, one against all, one against one, etc.

Support vectors
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Bag of Words
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Spatial relation

Fischler and Elschlager, IEEE Trans. on Comp., 1973

 Appearance

 How much does a patch of image resemble a known part?

 Spatial relation

 How well do the parts match the expected shape?
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OpenCV Library

 Open Source Computer Vision Library for image and video processing

 The library has more than 2500 optimized algorithms, including both 

classic and state-of-the-art computer vision and machine learning 

algorithms

http://www.opencv.org
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Point Cloud Library (PCL)

 Library for 2D/3D image and point cloud processing 

 Contains numerous state-of-the art algorithms including filtering, 

feature estimation, surface reconstruction, registration, model fitting and 

segmentation

http://www.pointclouds.org


