
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 9: Localization and mapping

This lecture is based on “Probabilistic Robotics” by Thrun, Burgard, and Fox (2005).

2

Where am I?

3

Localization: process of locating an object in space

Localization

Map Perception

Landmarks

Actuation

4

Dimensions of localization

Type of localization

 Local localization: initial pose is known.

 Global localization: initial pose is unknown.

 Kidnapped robot problem: the robot gets teleported to some
location during the operation.

Environments

 Static: the robot is the only moving object.

 Dynamic: other objects change their configuration or location over
time.

Approaches

 Passive: the localization module only observes the robot.

 Active: the localization module actively controls the robot to
minimize the error and/or the cost of bad localization.

Number of robots

 Single-robot: all data are collected at a single robot platform.

 Multi-robot: communication between the robots can enhance
their localization.

5

Probabilistic robotics

Uncertainty!

 Environment, sensor, actuation, model, algorithm

 Represent uncertainty using the calculus of probability theory

Probability theory

 X: random variable

 Can take on discrete or continuous values

 P(X = x), P(x) : probability of the random variable X taking on a value x

 Properties of P(x)

 P(X = x) >= 0

 x P(X = x) = 1 or x p(X = x) = 1

6

Probability

 P(x,y) : joint probability

 P(x,y) = P(x) P(y) : X and Y are independent

 P(x | y) : conditional probability of x given y

 P(x | y) = p(x) : X and Y are independent

 P(x,y | z) = P(x | z) P(y | z) : conditional independence

 P(x | y) = P(x,y) / P(y)

 P(x,y) = P(x | y) P(y) = P(y | x) P(x)

 P(x | y) =
P(y | x) P(x)

P(y)
=

likelihood ∙ prior
evidence

: Bayes’ rule

 P(y) = x P(x,y) = x P(y | x) P(x) : Law of total probability

7

Bayes’ rule

P(door=open | sensor=far)

=
P(far | open) P(open)

P(far)

=
P(far | open) P(open)

P(far | open) P(open) + P(far | closed) P(closed)

8

Bayes’ filter

bel(xt) = p(xt | z1:t, u1:t) : belief on the robot’s state xt at time t

Compute robot’s state: bel(xt)

 Predict where the robot should be based on the control ut

bel*(xt) = ∫p(xt | ut, xt-1) bel(xt-1) dxt-1

 Update the robot state using the measurement zt

bel(xt) = η p(zt | xt-1) bel*(xt)

9

Markov localization

a b c d

Measurement

World

10

Markov localization

Belief

Motion Update

Sensor Update

11

Sensor Update

Motion Update

Markov localization

Markov_localize (bel(xt-1): BELIEF;

ut: ROBOT_CONTROL;

zt: SENSOR_MEASUREMENT;

m: MAP) : BELIEF

do

across bel(xt) as xt loop

bel*(xt) := ∫p(xt | ut, xt-1, m) bel(xt-1) dxt-1

bel(xt) := η p(zt | xt-1, m) bel*(xt)

end

Result := bel*(xt)

end

12

Representation of the robot states

(0,0,0)

bel(x,y,θ)

x

y

θ

13

Markov localization

 Can be used for both local localization and global localization

 If the initial pose (x*0) is known: point-mass distribution

• bel(x0) =
1 if x0 = x∗0

0 otherwise

 If the initial pose (x*0) is known with uncertainty Σ: Gaussian

distribution with mean at x*0 and variance Σ

• bel(x0) = det(2𝜋Σ)−
1

2 exp −
1

2
x0 −x∗0

𝑇Σ−1 x0 −x∗0

 If the initial pose is unknown: uniform distribution

• bel(x0) =
1

|x|

 Computationally expensive

 Higher accuracy requires higher grid resolution

14

What if we keep track of multiple robot poses?

Measurement

15

Particle filter

A sample-based Bayes filter

 Approximate the posterior bel(xt) by a finite number of particles

 Each particle represents the probability of a particular state vector given

all previous measurements

 The distribution of state vectors within the particle is representative of

the probability distribution function for the state vector given all prior

measurements

16

Importance sampling

Generate samples from a distribution

Ef[I(x ∈ A)] = ∫f(x) I(x ∈ A) dx

= ∫f(x)/g(x) g(x) I(x ∈ A) dx

= Eg[w(x) I(x ∈ A)]

f(x) : target distribution

g(x) : proposal distribution – f(x) > 0 g(x) > 0

x

p(x)

17

Sensor Update

Motion Update

particle_filter_localize (Xt-1: PARTICLES;

ut: ROBOT_CONTROL;

zt: SENSOR_MEASUREMENT;

m: MAP) : PARTICLES

do

across Xt as xt loop

xt.pose := motion_update(xt-1, ut)

xt.weight := sensor_update(xt, zt, m)

end

Result := resample(Хt)

end

Particle filter localization

18

Particle filter localization

 Global localization

 Track the pose of a mobile robot without knowing the initial
pose

 Can handle kidnapped robot problem with little modification

 Insert some random samples at every iteration

 Insert random samples proportional to the average likelihood of
the particles

 Approximate

 Accuracy depends the number of samples

19

Motion models

Velocity-based

 No wheel encoders are given.

 New pose is based on the velocities and time elapsed.

Odometry-based

 Systems are equipped with wheel encoders.

20

Velocity model

𝑣 = ω * r -> r =
𝒱

ω

x = xc + 𝒱ω sin θ

y = yc - 𝒱

ω cos θ

θ -90

x' = xc + 𝒱ω sin (θ + ω Δt)

y’ = yc - 𝒱

ω cos (θ + ω Δt)

θ’ = θ + ω Δt

 𝑣 = 𝑣 + 𝜀𝛼1𝑣
2+𝛼2𝜔

2

 𝜔 = 𝜔 + 𝜀𝛼3𝑣
2+𝛼4𝜔

2

θ’ = θ + 𝜔 Δt + 𝜀𝛼5𝑣
2+𝛼6𝜔

2 Δt

21

Sampling from velocity motion model

sample_motion_model_velocity (xt-1 : ROBOT_POSE;

ut: ROBOT_CONTROL) : ROBOT_POSE

do

 𝑣 := 𝑣 + sample (α1 𝑣
2 + α2 𝜔

2)

 𝜔 := ω + sample (α3 𝑣
2+ α4 𝜔

2)

x’ := x –
 𝑣

 𝜔
sin (x.θ) +

 𝑣

 𝜔
sin (θ + 𝜔 Δt)

y’ := y +
 𝑣

 𝜔
cos (x.θ) -

 𝑣

 𝜔
cos (θ + 𝜔 Δt)

θ’ := θ + 𝜔 Δt + sample (α5 𝑣
2+ α6 𝜔

2) Δt

Result := (x’, y’, θ’)T

end

22

Odometry motion model

22
)'()'(yyxx

trans

)','(atan2
1

xxyy
rot

12
'

rotrot

• Robot moves from to

• Odometry information

,, yx ',',' yx

transrotrot
u ,,

21

trans

1rot

2rot

,, yx

',',' yx

 𝛿𝑟𝑜𝑡1 = 𝛿𝑟𝑜𝑡2 − 𝜀𝛼1𝛿
2
𝑟𝑜𝑡2+𝛼2𝛿

2
𝑡𝑟𝑎𝑛𝑠

 𝛿𝑡𝑟𝑎𝑛𝑠 = 𝛿𝑡𝑟𝑎𝑛𝑠 − 𝜀𝛼3𝛿
2
𝑡𝑟𝑎𝑛𝑠+𝛼4𝛿

2
𝑟𝑜𝑡1+𝛼4𝛿

2
𝑟𝑜𝑡2

 𝛿𝑟𝑜𝑡2= 𝛿𝑟𝑜𝑡2 - 𝜀𝛼1𝛿
2
𝑟𝑜𝑡2+𝛼2𝛿

2
𝑡𝑟𝑎𝑛𝑠

23

Sampling from odometry motion model

sample_motion_model_velocity (xt-1: ROBOT_POSE;

ut: ROBOT_CONTROL) : ROBOT_POSE

do

δrot1 := atan2 (y’ - y, x’ - x) – θ

δtrans := (x − x’)2 + (y − y’)2

δrot2 := θ’ - θ - δrot1

 δrot1 := δrot1 - sample (α1δ
2
rot1 + α2δ

2
trans)

 δtrans := δtrans - sample (α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

 δrot2 := δrot2 - sample (α1δ
2
rot2 + α2δ

2
trans)

x’ := x + δtrans cos (θ + δrot1)

y’ := y + δtrans sin (θ + δrot1)

θ’ := θ + δrot1 + δrot2

Result := (x’, y’, θ’)T

end

24

Effect of different noise parameter settings

Velocity model

α1 to α6: moderate α3 and α4: small α3 and α4: large

α1 and α2: large α1 and α2: small

Odometry motion model

α1 to α4: moderate α1 and α4: small α1 and α4: large

α2 and α3: large α2 and α3: small

25

Sensor models

Direct modeling of the sensor readings

Feature-based models

26

Beam-based sensor model

Scan z consists of K measurements:

Individual measurements are independent given the robot position:

},...,,{
21 K

zzzz

K

k

k
mxzPmxzP

1

),|(),|(

27

Beam-based sensor model

Typical measurement errors

1. Beams reflected by obstacles

2. Beams reflected by persons /

caused by crosstalk

3. Random measurements

4. Maximum range

measurements

28

Beam-based sensor model

Measurement noise

zexp zmax0

otherwise

zz
mxzP

z

0

e
),|(

exp

unexp

Unexpected obstacles

zexp zmax0

b

zz

hit
e

b
mxzP

2

exp)(

2

1

2

1
),|(

Random measurement Max range

max

1
),|(

z
mxzP

rand

zexp zmax0zexp zmax0

max

max

1
(| ,)

0

z z
P z x m

otherw ise

29

Beam-based sensor model

),|(

),|(

),|(

),|(

),|(

rand

max

unexp

hit

rand

max

unexp

hit

mxzP

mxzP

mxzP

mxzP

mxzP

T

30

Beam-based sensor model

Advantages

 Closely linked to the geometry and physics of range finders

Disadvantages

 Lack of smoothness

 Computationally involved

31

Likelihood fields

P(z|x,m)

Map m

Likelihood field

p(zk
t | xt, m) = zhit phit + zrand prand + zmax pmax

zhit, zrand, zmax : mixing weights

32

Likelihood fields

Project the end points of a sensor scan zt into the map

 Measurement noise: Zero-centered Gaussian distribution

 phit(𝑧𝑡
𝑘 | xt, m) = εσ(dist)

 dist: distance between the measurement and the nearest obstacle
in the map m

 Failures: Point-mass distribution

 pmax(𝑧𝑡
𝑘 | xt, m) =

1 if z = zmax

0 otherwise

 Unexplained random measurements: Uniform distribution

 prand (𝑧𝑡
𝑘 | xt, m) =

1
zmax

if 0 ≤ 𝑧𝑡
𝑘 ≤ zmax

0 otherwise

33

Likelihood fields

Measurement
coordinate

likelihood_field_range_finder (xt: ROBOT_POSE;

zt: SENSOR_MEASUREMENT;

m: MAP) : REAL_64

do

q := 1.0

across zt loop

if 𝑧𝑡
𝑘 < zmax then

𝑥𝑧𝑡𝑘
:= x + 𝑥𝑘,𝑠𝑒𝑛𝑠 cos(θ) – 𝑦𝑘,𝑠𝑒𝑛𝑠 sin(θ) + 𝑧𝑡

𝑘 cos(θ + θ𝑘,𝑠𝑒𝑛𝑠)

𝑦𝑧𝑡𝑘
:= y + 𝑦𝑘,𝑠𝑒𝑛𝑠 cos(θ) + 𝑥𝑘,𝑠𝑒𝑛𝑠 sin(θ) + 𝑧𝑡

𝑘 sin(θ + θ𝑘,𝑠𝑒𝑛𝑠)

d := m.compute_distance_to_the_nearest_obstacle(𝑥𝑧𝑡𝑘
, 𝑦𝑧𝑡𝑘

)

q := q ∙ (zhit ∙ prob(d, σhit) +
zrand

zmax
)

end

end

Result := q

end

34

Likelihood fields

Advantages

 Smooth

 Small changes in the robot’s pose result in small changes of the
resulting distribution

 Computationally more efficient than ray casting

Disadvantages

 No modeling of dynamic objects

 Sensors can see through the wall

 Nearest neighbor cannot determine if a path is obstructed by an
obstacle

 No map uncertainty considered

 Can change occupancy to occupied, free, and unknown

35

Correlation-based measurement model

36

Correlation-based measurement model

Map matching

1. Compute a local map mrobot from the scans zt in robot frame

2. Transform the local map mrobot to the global coordinate frame mlocal

3. Compare the local map mlocal and the map m

ρ =
 x,y (mx,y – m) ∙ (mx,y,local (xt)– m)

 x,y (mx,y – m)2 x,y (mx,y,local (xt)– m)2
: correlation

 m =
1

2N
 x,y (mx,y + mx,y,local) : average map value

p(mlocal | xt, m) = max { ρ, 0 }

37

Correlation-based measurement model

Advantages

 Easy to compute

 Explicitly considers free-space

Disadvantages

 Does not yield smooth probability in pose xt

 May convolve the map m with a Gaussian kernel first

 Can incorporate inappropriate local map information

 May contain areas beyond the maximum sensor range

 Does not include the noise characteristic of range sensors

38

Feature extraction

feature: compact representation of raw data

 Range scans: lines, corners, local minima in range scans, etc.

 Camera images: edges, corners, distinct patterns, etc.

 High level features in robotics: places

Advantages of using features

 Reduction of computational complexity

 Increase in feature extraction

 Decrease in feature matching

39

Feature extraction: split and merge

Split Split

Split Merge

40

Feature extraction: split and merge

split(s: POINT_SET) : LINE_SET -- sorted points

do

pmax := l.compute_farthest_point(s)

if l.compute_distance(pmax) > dmax then

lines.add_set(split(s.split_set(1, pmax)))

lines.add_set(split(s.split_set(pmax, l.size)))

else

lines.add(l)

end

Result := lines

end

41

Feature extraction: split and merge

merge(lines: LINE_SET) : LINE_SET

do

from until not lines.is_next_pair_collinear loop

l.merge_lines(lines.left_line , lines.right_line)

if l.compute_distance(l.compute_farthest_point) < dmax then

out_lines.add(l)

lines.mark_current_pair_as_used

end

lines.increment_next_pair

end

out_lines.add_set(lines.get_all_unmarked_lines)

Result := out_lines

end

42

Feature extraction: RANSAC

RANSAC(s: POINT_SET) : LINE

do

from c := 1 until c > cmax loop
l.set_line_from_two_random_points(s)

if l.count_inliners > num then

num := l.count_inliners

line := l

end

end

Result := line

end

Fischler, M. and Bolles, R. 1981. “Random Sample Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography”. Communications of the ACM. 24(6).

43

Data association

measurement

map

44

Data association: nearest neighbor

nearest_neighbor(F, M: ARRAY[FEATURE]) : HYPOTHESIS

do

from i := 1 until i > n loop

fi := F.item(i)

dmin := dmin.Max_value

from j := 1 until j > l loop

mj := M.item(j)

dtemp := Mahalanobis2(fi, mj)

if dtemp < dmin then

dmin := dtemp

mnearest := mj

end

end

if dmin < Χ2(di, α) then -- di = dim(zi), α: desired confidence level

H.add_pair(fi, mnearest)

else

H.add_pair(fi, 0)

end

end

Result := H

end

Measurement: F = {f1, …, fn}

Map features: M = {m1, …, ml}

45

Data association: joint compatibility

joint_compatibility(H: HYPOTHESIS; i: INTEGER_16; F, M: ARRAY[FEATURE])

do

fi := F.item(i)

if i > l then

if H.score > Best.score then

Best := H

end

else

from j := 1 until j > l loop

mj := M.item(j)

if is_compatible(fi, mj) and H.is_joint_compatible(fi, mj) then

joint_compatibility(H.add_pair(fi, mj) , i+1, F, M)

end

end

if H.score + n – i >= Best.score then -- can do better?

joint_campatibility(H.add_pair(fi, 0), i+1, F, M)

end

end

end

Neira, J. Tardos, J.D. 2001. "Data association in stochastic mapping using the joint compatibility test”, Robotics
and Automation, IEEE Transactions on 17 (6): 890–897.

Measurement: F = {f1, …, fn}

Map features: M = {m1, …, ml}

46

Resampling

w1 w2 w3 wn

w1 w2 w3 wn

Roulette wheel sampling

Stochastic universal sampling

distance between two samples = total weight / number of samples

starting sample: random number in [0, distance between samples)

47

Mapping

Map: a list of objects and their locations in an environment

 Given N objects in an environment

m = { m1, … , mN }

Mapping: the process of creating a map

Perception

Actuation

48

Types of Maps

Lacation-based map

 m = { m1, … , mN } contains N locations

 Volumetric representation

 A label for any location in the world

 Knowledge of presence and absence of objects

Feature-based map

 m = { m1, … , mN } contains N features

 Sparse representation

 A label for each object location

 Easier to adjust the position of an object

49

Occupancy grid map

 Location-based map

 An environment as a collection of grid cells

 Each grid cell with a probability value that the cell is occupied

 Each grid cell is independent!

 Easy to combine different sensor scans and different sensor modalities

 No assumption about type of features

55

Occupancy grid mapping

56

Occupancy grid cells

mi: the grid cell with index i

zt: the measurement at time t

xt: the robot’s pose (x, y, θ) at time t

p(mi | zt, xt) : probability of occupancy

p(mi | zt, xt)
p(¬mi | zt,xt)

=
p(mi | zt,xt)

1 − p(mi | zt,xt)
: odds of occupancy

lt,i = log
p(mi |zt,xt)

1 − p(mi |zt,xt)
: log odds of occupancy

p(mi | zt, xt) = 1 -
1

1 + exp(lt,i)

57

Bayes’ law using log odds

p(A|B) =
p(B|A) p(A)

p(B)

p(¬A|B) =
p(B|¬A) p(¬A)

p(B)

o(A|B) =
p(A|B)
p(¬A|B)

=
p(B|A) p(A)

p(B|¬A) p(¬A)
= λ(B|A) o(A)

log(o(A|B)) = log(λ(B|A)) + log(o(A))

 Ranges between -∞ and ∞

 Avoids truncation problem around probabilities near 0 and 1

58

Occupancy grid mapping

occupancy_grid_mapping (xt : ROBOT_POSE;

zt : SENSOR_MEASUREMENT;

{lt-1,i}: OCCUPANCY) : OCCUPANCY

do

across m as mi loop

if mi.is_in_perceptiual_field(z) then

lt,i := lt-1,i + inverse_sensor_model (xt, zt, mi) – l0

else

lt,i := lt-1,i

end

end

Result := {lt,i}

end

lt,i := log
p(mi| xi:t, zi:t)

1 − p(mi| xi:t, zi:t)

l0 := log
p(mi=1)
p(mi= 0)

:= log
p(mi)

1 −p(mi)

59

Occupancy grid mapping

grid angle

grid range

beam index

grid out of range or behind an obstacle

grid in the obstacle

grid unaccupied

α: thickness of the obstacle
β: opening angle of the beam
zmax: max range of the beam

inverse_range_sensor_model (xt : ROBOT_POSE;

zt : SENSOR_MEASUREMENT;

mi : GRID_CELL) : REAL_64

do

xi := mi, x

yi := mi, y

r := √((xi - x)2 + (yi - y) 2)

φ := atan2(yi – y, xi – x) – θ

k := argminj | φ – θj,sens |

if r > min(zmax, 𝑧𝑡
𝑘 + α/2) or | φ – θj,sens | > β/2 then

Result := l0

elseif 𝑧𝑡
𝑘< zmax and | r - 𝑧𝑡

𝑘| < α/2 then

Result := locc

else -- r <= 𝑧𝑡
𝑘

Result := lfree

end

end

60

But what about drift?

Localization

 If we have a map, we can localize

Mapping

 If we know the robot’s pose, we can map

Do both!

 Estimate a map

 Localize itself relative to the map

Simultaneous Localization and Mapping (SLAM)

61

Simultaneous Localization and Mapping

Localization: p(x | m, z, u)

Mapping: p(m | x, z)

SLAM: p(x, m | z, u)

 The map depends on the robot’s pose during the measurement

 If the pose is known, mapping is easy

62

Rao-Blackwellization

p(x1:t, m | z1:t, u0:t-1) = p(x1:t | z1:t, u0:t-1) p(m | x1:t, z0:t-1)

SLAM posterior = robot path posterior * mapping with known poses

p(x1:t | z1:t, u0:t-1) : localization

p(m | x1:t, z0:t-1) : mapping

x1:t: the robot’s poses (x, y, θ)

m: the map

z1:t: the measurements

u0:t-1: the controls

Murphy, K. 1999. Bayesian map learning in dynamic environments. In NIPS ’99 (Neural Info. Proc. Systems)

63

Rao-Blackwellized particle filter SLAM

Use a particle filter to represent potential trajectories of the robot

 Every particle carries its own map

 The probability of survival of a particle is proportional to the
likelihood of the measurement with respect to the particle’s own
map

Problem: big map * large number of particles!

Improve pose estimate

 Use scan matching to compute locally consistent pose correction

 Smaller error -> fewer particles necessary

