
ETHZ D-INFK Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification (Autumn 2015)
Course Project

Hand-out date:​ 7th October 2015
Team registration:​ 14th October 2015
Due date:​ 27th November 2015

1. Summary

This project consists of verifying some basic algorithms using auto-active verification tools. The
first part of the project will consist of verifying the correctness of some given Eiffel routines
using AutoProof [4]; the second part of the project will consist of constructing and verifying a
particular sorting algorithm in Boogie [5]. Your activities, experiences, design choices, and
evaluations will be documented in a report.

2. Teams

You can work in teams of ​up to three persons​. Please email the assistant
(​chris.poskitt@inf.ethz.ch​) ​no later than 14th October to register your team (even if you plan to
work on your own).

3. Project Description

The project consists of three parts: a verification task in AutoProof [4], a verification task in
Boogie [5], and a report. Sections 3.1-3.3 describe these tasks in more detail; Section 3.4
describes how marks will be awarded.

Note that extensive documentation for the tools is available online:

● AutoProof: ​http://se.inf.ethz.ch/research/autoproof/
● Boogie: ​http://research.microsoft.com/en-us/projects/boogie/

mailto:chris.poskitt@inf.ethz.ch
http://se.inf.ethz.ch/research/autoproof/
http://research.microsoft.com/en-us/projects/boogie/

3.1. Task 1 of 3: AutoProof

Your first task is to verify the features in the ​SV_AUTOPROOF Eiffel class, which is available to
download from the Software Verification 2015 course webpage. This is to be achieved by
adding missing postconditions and loop invariants, then verifying them in AutoProof [4].

Please take note of the following requirements:

● We strongly recommend reading at least the AutoProof tutorial [4] before commencing
this verification task.

● The existing implementation of SV_AUTOPROOF ​must not​ be altered.
● SV_AUTOPROOF already contains a number of assertions; likewise, these ​must not be

altered or removed.
● We have explicitly indicated where assertions are missing using Eiffel comments (“--”);

specifications should be added to ​all​ of these places.
● Your specifications should be strong enough to ​completely characterise the functional

behaviour of the features (only partial credit is available if features are verified with
respect to weaker specifications).

3.2. Task 2 of 3: Boogie

Your second task is to implement, specify, and verify a particular sorting routine in Boogie [5],
using the ​sv_boogie.bpl​ template provided on the Software Verification 2015 course webpage.

The Boogie template models a fixed-length integer array as the map ​‘a’ from indices 0 through
to ​N−1​. You should implement, specify, and verify the procedure ​‘sort’ with the following
behaviour:

● if the elements of ​‘a’ all have values in the range ​-3N to ​+3N​, then ​‘a’ ​should be sorted
using ​Bucket Sort (with three buckets)​;

● otherwise, ​‘a’​ should be sorted using ​Quick Sort​.

Please take note of the following items:

● Descriptions of Bucket Sort and Quick Sort are available at [1,2,3].
● The implementation of Bucket Sort can recursively call Quick Sort to sort each subarray

in the “buckets”.
● For full marks, you should specify and verify the ​complete behaviour of the algorithm

(i.e. that the resulting array is both sorted ​and​ a permutation of the original array).
● Unlike “Task: AutoProof”, the provided template (sv_boogie.bpl) is just a starting point,

and you can alter it if you prefer to model and verify the algorithm in a different way.

3.3. Task 3 of 3: Report

The final task is to provide a written report, fully describing your design choices, experiences,
and evaluations of using AutoProof and Boogie in the above two tasks.

Please note the following requirements:

● The report should be written as an ​academic report​, i.e. sensibly structured, well
written, with your activities fully documented, discussed, and evaluated.

● Particular effort should be made to contrast your experiences doing verification at the
program level (AutoProof) and intermediate verification language level (Boogie).

● Submitting verified implementations alone is not enough to get full credit in this
assessment; the report is an important component and the weighting of the marks
reflects this.

● The Marking Scheme (Section 3.4) mentions a number of particular points that your
report should cover. You may wish to structure the report similarly.

3.4. Marking Scheme

The list below indicates the weighting of the ​25 available points across the three tasks. Note
that points are determined from the combination of your source code ​and​ your report.

1. AutoProof verification (10 points). Add missing specifications to all features of the
SV_AUTOPROOF class as embedded contracts (without altering the implementation).
Describe how you were able to specify complete specifications, and any problems that
occurred. ​Using AutoProof, verify as many features of SV_AUTOPROOF as possible.
Discuss if there were any aspects of the specification you had to change to make them
easier to verify. Describe which parts of the specification you could not verify, and what
the limitations were that prevented you from doing it.

2. Boogie implementation (2 points). Implement the sorting algorithm described in
Section 3.2. Discuss your design choices, and how you modelled the algorithm using the
primitives of Boogie.

3. Boogie specification (4 points). Specify the complete behaviour of the sorting algorithm
using the specification primitives of Boogie. Discuss your specification choices, in
particular, how you modelled the “permutation” property for the resulting array.
Describe any difficulties and how you overcame them. Contrast the specification
language of Boogie with the specification language of AutoProof.

4. Boogie verification (7 points). Verify your Boogie program using Boogie. Report any
significant problems you encountered; for example, which procedures you could verify
and which ones you could not. Describe if there were any aspects of the implementation
or of the specification you had to change to make them easier to verify. Describe which

parts of the specification you could not verify, and what the limitations were that
prevented you from doing it. Explain how you achieved modular verification.

5. Structure and writing (2 points). Two points are awarded for reports that are well
structured, well written, with good spelling and grammar.

4. Web-Based Tools

There are a number of web-based tools that will prove useful throughout the project. Please,
however, ensure that you ​regularly save your changes offline:

● AutoProof via Comcom (​http://cloudstudio.ethz.ch/comcom/#AutoProof​): verify your
SV_AUTOPROOF class by pasting it into the “More AutoProof” tab and clicking “Run”.

● Boogie via Rise4Fun (​http://rise4fun.com/boogie​): verify your Boogie program by
pasting it into the form and clicking the play button.

It is also possible to use these tools offline: see the instructions on the tool webpages [4,5].

5. Submission

Please submit a ​zip file containing your source code and report (in ​PDF format​) by email to the
assistant by the due date. Your zip file should contain ​two folders​: a folder (named ‘source’) for
source code, and a folder (named ‘report’) for the PDF version of your final report.

6. Support

You can ask questions about the project during the exercise sessions on Wednesday. Outside of

these sessions, the assistant is available to meet by appointment (please email

chris.poskitt@inf.ethz.ch​).

Questions and answers that are relevant to all groups will be anonymised and posted to the

following page (please check it regularly).

http://se.inf.ethz.ch/courses/2015b_fall/sv/questions_answers.html

References

[1] Wikipedia: Bucket sort. ​http://en.wikipedia.org/wiki/Bucket_sort
[2] Wikipedia: Quicksort. http://en.wikipedia.org/wiki/Quicksort
[3] Cormen et al.: ​Introduction to Algorithms.​ MIT Press, 3rd edition, 2009.
[4] AutoProof: ​http://se.inf.ethz.ch/research/autoproof/
[5] Boogie: ​http://research.microsoft.com/en-us/projects/boogie/

http://cloudstudio.ethz.ch/comcom/#AutoProof
http://rise4fun.com/boogie
mailto:chris.poskitt@inf.ethz.ch
http://se.inf.ethz.ch/courses/2015b_fall/sv/questions_answers.html
http://en.wikipedia.org/wiki/Bucket_sort
http://se.inf.ethz.ch/research/autoproof/
http://research.microsoft.com/en-us/projects/boogie/

