
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C. A. Furia, Dr. S. Nanz Software Verification

Software Verification – Exam

ETH Zürich

20 December 2010

Surname, first name: ...

Student number: ..

I confirm with my signature that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

Signature: ...

Directions:

• Exam duration: 1 hour 45 minutes.

• Except for a dictionary you are not allowed to use any supplementary
material.

• All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

• Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

• Please write legibly! We will only correct solutions that we can read.

• Manage your time carefully (take into account the number of points for
each question).

• Please immediately tell the exam supervisors if you feel disturbed during
the exam.

Good luck!

Question Available points Your points

1) Axiomatic semantics 9

2) Separation logic 13

3) Data flow analysis 12

4) Model checking 10

5) Software model checking 13

6) Termination proofs 13

Total 70

2

[This page is intentionally left blank.]

3

1 Axiomatic semantics (9 points)

Consider the following Hoare triple (all variables of type NATURAL, assumed to
describe mathematical natural numbers):

{ y = n }
1 from
2 z := 1
3 until y = 0 loop
4 y := y − 1
5 z := z ∗ x
6 end

{ z = xn }

Prove that this triple is a theorem of Hoare’s axiomatic system for partial
correctness.

Solution:

1 { y = n }
2 from

3 { 1 = xn−y = x0}
4 z := 1

5 { z = xn−y }
6 until y = 0 loop

7 { (z = xn−y) ∧ ¬(y = 0) }
8 { z · x = xn−(y−1) = xn−y · x }
9 y := y − 1

10 { z · x = xn−y }
11 z := z ∗ x

12 { z = xn−y }
13 end

14 { (z = xn−y) ∧ (y = 0) }
15 { z = xn }

4

[This page is intentionally left blank.]

5

2 Separation Logic (13 points)

Consider the definition of the list binary predicate:

list i [] ≡ empty ∧ i = nil
list i (a : σ) ≡ ∃j· (i 7→ a, j) ∗ (list j σ)

where σ
def
= [] | a : σ defines a sequence of integers.

2.1 States and semantics (7 points)

Consider the separation logic predicate P , where

P
def
= 3 7→ 5, 8 ∗ 8 7→ 7, 11 ∗ 11 7→ 6, 1 ∗ 1 7→ 3, nil

and answer the following questions:

(1) For every state (s, h) that satisfies P , the heap component h will be the
same. Write such a function h explicitly as a set of pairs.

Solution:
h = {(1,3),(2,nil),(3,5),(4,8),(8,7),(9,11),(11,6),(12,1)}.

(2) If (s,h) |= P , then (s,h) |= list i σ ∗ true for several values of i and σ.
Provide all such pairs (i,σ).

Solution:
(nil, []), (1, 3:[]), (11, 6:3:[]), (8, 7:6:3:[]), (3, 5:7:6:3:[]). It is also fine to
write [5,7,6,3] instead of 5:7:6:3:[], etc.

6

2.2 Separation logic and verification (6 points)

Consider the signature and separation logic specification for a routine that adds
a value to the front of a linked list. It returns a pointer to the new head node
by storing it in the Result variable:

add front (list pointer : INTEGER ; value: INTEGER): INTEGER
require list list pointer σ
ensure list Result (value : σ)

(1) Write a body for the routine. Use the cons command, whose semantics is
given by the axiom:

ConsAxiom
{empty}x := cons(e1,. . . ,en){x 7→ e1,. . . ,en}

provided that 1 ≤ n and x is not free in any of e1,. . . ,en.

Solution:
Result := cons(value, list pointer)

(2) Prove your routine body correct.

Solution:
The proof looks as follows in outline form (other forms are also acceptable):

{list list pointer σ}
{empty}

Result := cons(value, list pointer)
{Result 7→ value, list pointer } // By the axiom for cons.

{Result 7→ value, list pointer ∗ list list pointer σ} // By the frame rule.
{list Result (value : σ)} // By the rule of consequence.

(3) Write down the schemas of all the inference rules that you used in the proof
above.

Solution:
The rule names may differ.

{P}c{Q}
Frame

{P ∗R}c{Q ∗R}
provided that no free variable of R is assigned by c.

{P}c{Q}
Consequence

{P ′}c{Q′}
provided that P ′ ⇒ P and Q⇒ Q′.

7

3 Data flow analysis (12 points)

An arithmetic expression is called trivial if it consists only of a single variable
or constant; it is called non-trivial otherwise. Let AExp? denote the set of all
non-trivial arithmetic expressions that occur in a given program fragment, and
let AExp(a) denote the set of all non-trivial arithmetic subexpressions of an
expression a. Furthermore, let Vars(a) denote the set of variables occurring in
a.

With this terminology, recall the definition of the available expressions anal-
ysis from the lecture

AEentry(`
′) =

{
∅ if `′ is the initial label⋂

(`,`′)∈CFG AEexit(`) otherwise

AEexit(`) = (AEentry(`) \ killAE (B
`)) ∪ genAE (B

`)

where B is an elementary block of the form [x := a] or [b], and the kill and gen
functions are given by

killAE ([x := a]`) = {a′ ∈ AExp? | x ∈ Vars(a′)}
killAE ([b]

`) = ∅
genAE ([x := a]`) = {a′ ∈ AExp(a) | x /∈ Vars(a′)}

genAE ([b]
`) = AExp(b)

Now consider the following program fragment:

1 a := b ∗ c
2 d := e + f
3 f := a − d
4 if f > 0 then
5 f := b ∗ c
6 else
7 from
8 g := 1
9 until a ∗ g > 10 loop

10 a := a ∗ f
11 g := g + 1
12 end
13 end
14 b := a + b ∗ c

(1) Draw the control flow graph of the program fragment and label each ele-
mentary block. (3 points)

(2) Annotate your control flow graph with the analysis result of an available
expressions analysis of the program fragment. (7 points)

8

Solution to (1) and (2):

[a := b * c]1

[d := e + f]2

[f := a – d]3

[f > 0]4

[f := b * c]5 [g := 1]6

[a * g > 10]7

[a := a * f]8

[g := g + 1]9

[b := a + b * c]10

{}
{b*c}

{b*c}
{b*c,e+f}

{b*c,e+f}
{b*c,a–d}

{b*c,a–d}
{b*c,a–d}

{b*c,a–d}
{b*c,a–d}

{b*c,a–d}
{b*c,a–d}

{b*c}
{b*c,a*g}

{b*c,a*g}
{b*c}

{b*c}
{b*c}

{b*c}
{}

(3) How can you use your analysis result to optimize the program fragment?
(2 points)

Solution:
The analysis result can be used to eliminate common subexpressions, i.e.
expressions which are always computed at least twice on a computation
path.

As the expression b ∗ c is available at the entries to blocks 5 and 10 where it
is also recomputed, it may be worth for optimization purposes to introduce
a temporary variable tmp holding the computed value. The transformed
code looks as follows:

tmp := b ∗ c
a := tmp
d := e + f
f := a − d
if f > 0 then

f := tmp
else

from
g := 1

until a ∗ g > 10 do
a := a ∗ f
g := g + 1

end
end
b := a + tmp

9

4 Model Checking (10 points)

Recall the semantics of LTL over finite words with alphabet P. For a word
w = w(1)w(2) · · ·w(n) ∈ P∗ with n ≥ 0 and a position 1 ≤ i ≤ n the satisfac-
tion relation |= is defined recursively as follows for p, q ∈ P.

w, i |= p iff p = w(i)
w, i |= ¬φ iff w, i 6|= φ
w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2
w, i |= Xφ iff i < n and w, i+ 1 |= φ
w, i |= φ1 Uφ2 iff there exists i ≤ j ≤ n such that: w, j |= φ2

and for all i ≤ k < j it is the case that w, k |= φ1
w, i |= ♦ φ iff there exists i ≤ j ≤ n such that: w, j |= φ
w, i |= � φ iff for all i ≤ j ≤ n it is the case that: w, j |= φ
w |= φ iff w, 1 |= φ

4.1 Automata and LTL formulas (6 points)

Consider the automata TA (with states A,B,C) and TX (with states X,Y, Z)
in Figure 1, over the alphabet {p, q}. Notice that TA is nondeterministic but
TX is deterministic.

p p, q

p, q

p q

q

A B C

p

p

q

X Y Z

Figure 1: Automata TA (top) and TX (bottom).

For each of the following LTL formulas say whether every run of TA or TX
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

10

(1) TA |= �(♦p)

No: the word w1 = p q is a counterexample because w1, 2 6|= p and hence
w1, 2 6|= ♦p

(2) TX |= �(♦p)

No, with the same counterexample as in question (1).

(3) TA |= ♦ (p ∧ X(p ∨ q))
Yes: every accepting run reaches the state C; to do so it must end with the
events p p or p q.

(4) TX |= ♦ (p ∧ Xp)

No: the word w2 = p q is clearly accepted but w, 1 6|= Xp because w2(1+1) =
q 6= p.

(5) TX |= p U q

Yes: every accepted word begins with q or with pnq, with n ≥ 1, which
satisfy p U q.

4.2 Automata-based model checking (4 points)

Let 〈TA〉 and 〈TX 〉 respectively denote the set of all words accepted by TA
and TX . Show that 〈TA〉 6⊆ 〈TX 〉 by constructing the intersection automaton
TA×¬TX of TA and the complement of TX , and by showing that the intersection
automaton accepts some word.

(Remember that the complement automaton of TX is identical to TX except
for the accepting states which are X and Y in the complement, with Z becoming
a rejecting state in the complement).

Solution:

p q

q

p

p
q

A,X A, Y A,Z

qB, Y C,ZC, Y
p

p
p p

The accepting state C, Y is reachable with the word p p which is therefore in
the interesection of 〈TA〉 and ¬〈TX 〉.

11

5 Software model checking (13 points)

Consider the following code snippet C, where x, y are integer variables.

1 assume x + y > 0 end
2 x := x + y

Remember that the Boolean abstraction of an assume c end statement is
assume not Pred (not c) end followed by a parallel conditional assignment updat-
ing the predicates with respect to the original assume statement. Pred (f) denotes
the weakest under-approximation of the expression f in terms of the given pred-
icates.

5.1 Boolean abstractions (10 points)

Build the Boolean abstraction A of the code snippet C with respect to the
following predicates:

p = x > 0
q = y > 0

Solution:
The abstraction is:

1 assume not (not p and not q) end
2 if (not p and not q) or p then p := True
3 elseif (not p and not q) or not p then p := False
4 else p := ? end
5 if (not p and not q) or q then q := True
6 elseif (not p and not q) or not q then q := False
7 else q := ? end
8
9 if p and q then p := True

10 elseif not p and not q then p := False
11 else p := ? end
12 if q then q := True
13 elseif not q then q := False
14 else q := ? end

After simplifications, we get:

1 assume p or q end
2 if not q then p := True end
3
4 if p and q then p := True end

5.2 Abstract and concrete traces (3 points)

Provide an annotated trace for the Boolean abstraction A, and a corresponding
annotated trace for the concrete program C which is feasible. Note that in
general there are multiple traces of C corresponding to the same trace of A:
you must select one which is feasible.

The trace of A should be in the form of a valid sequence of statements
and branch conditions in A which reaches the bottom of A. Each statement
in the sequence must be preceded and followed by a complete description of
the abstract program state in terms of values of the Boolean predicates p, q.
Similarly, the trace of C should be in the form of a valid sequence of statements

12

and branch conditions in C which reaches the bottom of C without violating
any assertion. Each statement in the sequence must be preceded and followed
by a concrete value for the variables x, y which satisfies the corresponding state
in the abstract trace of A.

Solution:

1 {p, not q}
2 assume p or q end
3 {p, not q}
4 if not q then p := True end
5 {p, not q}
6 if p and q then p := True end
7 {p, not q}

A matching concrete trace which is feasible is, for example, the following.

1 {x = 3, y = −1}
2 assume x + y > 0 end
3
4
5 {x = 3, y = −1}
6 x := x + y
7 {x = 2, y = −1}

13

6 Termination proofs (13 points)

Consider the following implementation of binary search, where // denotes integer
division.

binary search (v: G ; list : LIST [G] ; n: INTEGER): BOOLEAN
−− Is ‘v’ contained in ‘ list ’ in the range [1..‘ n ’]?
require n > 0 and list.is sorted
do
from

l := 1
u := n
Result := False

until l > u
loop
m := (l + u) // 2
if list [m] = v then
−− Element found
Result := True
l := u + 1

elseif list [m] > v then
−− Continue search on left side
u := m − 1

else
−− Continue search on right side
l := m + 1

end
end

end

(1) Consider the loop invariant

I , u− l + 1 ≥ 0

Find a suitable variant function V which decreases along all branches of
the loop body, and describe how V and I can be combined to prove that
the loop always terminates. You do not have to provide a formal proof,
but only to outline a termination argument for the given program with a
suitable variant V . (7 points)

Solution:
A termination proof can be carried out using the variant

V , u− l + 1

Termination can be established from the observation that V decreases along
each branch, because either u is decreased and l stays the same, or l is
increased and u stays the same. The invariant I then guarantees that V
has a lower bound, hence the loop must terminate when V reaches the lower
bound.

(2) Provide a proof that I is an invariant of the loop. For full credit, it is
enough if you consider only the else branch of the conditional and prove
invariance (consecution) along it. (6 points)

Solution:

14

from
{ n > 0 }
{ n − 1 + 1 = n ≥ 0 }
l := 1
u := n
Result := False
{ u − l + 1 ≥ 0 }

until l > u
loop
{ u − l + 1 ≥ 0 and l ≤ u }
m := (l + u) // 2
if list [m] = v then
{ u − l + 1 ≥ 0 and l ≤ u and list [m] = v }
{ u − (u + 1) + 1 = 0 ≥ 0 }
Result := True
l := u + 1
{ u − l + 1 ≥ 0 }

elseif list [m] > v then
{ m = (l + u) // 2 and u − l + 1 ≥ 0 and l ≤ u and list [m] > v }
{ m − 1 − l + 1 = m − l ≥ 0 }
u := m − 1
{ u − l + 1 ≥ 0 }

else
{ m = (l + u) // 2 and u − l + 1 ≥ 0 and l ≤ u and list [m] > v }
{ u − m − 1 + 1 = u − m ≥ 0 }
l := m + 1
{ u − l + 1 ≥ 0 }

end
end

To discharge the verification condition in the first branch of the elseif ,
notice that m = (l+u)//2 implies u ≥ 2∗m − l, which combined with u − l +

1 ≥ 0 implies (2∗m − l)− l + 1 = 2∗(m − l)+ 1 ≥ 0 . The latter also implies
m − l ≥ 0 because m, l are of integer type.

A similar reasoning discharges the verification condition in the second
branch of the elseif : m = (l+u)//2 implies −l ≤ u − 2∗m, which combined
with u − l + 1 ≥ 0 implies u + u − 2∗m + 1 = 2∗(u − m)+ 1 ≥ 0 . The latter
also implies u − m ≥ 0 because m, u are of integer type.

15

	Axiomatic semantics (9 points)
	Separation Logic (13 points)
	States and semantics (7 points)
	Separation logic and verification (6 points)

	Data flow analysis (12 points)
	Model Checking (10 points)
	Automata and LTL formulas (6 points)
	Automata-based model checking (4 points)

	Software model checking (13 points)
	Boolean abstractions (10 points)
	Abstract and concrete traces (3 points)

	Termination proofs (13 points)

