
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C. A. Furia, Dr. S. Nanz Software Verification

Software Verification – Exam

ETH Zürich

17 December 2012

Surname, first name: ...

Student number: ..

I confirm with my signature that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

Signature: ...

Directions:

• Exam duration: 1 hour 45 minutes.

• Except for a dictionary you are not allowed to use any supplementary
material.

• All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

• Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

• Please write legibly! We will only correct solutions that we can read.

• Manage your time carefully (take into account the number of points for
each question).

• Please immediately tell the exam supervisors if you feel disturbed during
the exam.

Good luck!

Question Available points Your points

1) Axiomatic semantics 18

2) Separation Logic 15

3) Data flow analysis 10

4) Model checking 15

5) Real time verification 12

Total 70

2

[This page is intentionally left blank.]

3

1 Axiomatic semantics (18 points)

Consider the following annotated program, where A is an array indexed from 1
of element type G, n is an integer variable storing A’s size, k is another integer
variable, v is a variable of type G initialized to some fixed value, found is a
Boolean variable.

{ n ≥ 0 }
1 from
2 k := n
3 found := False
4 until found or k <1 loop
5 if A[k] = v then
6 found := True
7 else
8 k := k − 1
9 end

10 end
{ (found =⇒ 1≤k≤n ∧ A[k] = v) ∧ (¬found =⇒ k <1)}

1.1 Program semantics (2 points)

Characterize, in plain English, which value of k the program computes from the
inputs A, n, and v. In other words: what does the program do?

Solution:
As apparent from the postcondition, the program searches for an element with
value v in A between positions 1 and n. If it finds the element, k stores the
element’s position; if it does not find the element, k is out of array’s bounds.

1.2 Partial correctness (15 points)

Prove that the triple (precondition, program, postcondition) is a theorem of
Hoare’s axiomatic system for partial correctness.

Solution:

1 { n ≥ 0 }
2 from
3 k := n
4 found := False
5 { 0 ≤ k ≤ n ∧ (found =⇒ 1≤k≤n ∧ A[k] = v) }
6 until found or k <1 loop
7 { 1≤ k ≤ n ∧ ¬ found ∧ (found =⇒ 1≤k≤n ∧ A[k] = v) }
8 if A[k] = v then
9 { A[k] = v ∧ 1≤k≤n ∧ ¬ found }

10 { 0 ≤ k ≤ n ∧ 1≤k≤n ∧ A[k] = v }

4

11 found := True
12 { 0 ≤ k ≤ n ∧ (found =⇒ 1≤k≤n ∧ A[k] = v) }
13 else
14 { A[k] 6=v ∧ 1≤k≤n ∧ ¬ found }
15 { 1 ≤ k ≤ n + 1 ∧ (found =⇒ 2≤k≤n + 1 ∧ A[k − 1] = v) }
16 k := k − 1
17 { 0 ≤ k ≤ n ∧ (found =⇒ 1≤k≤n ∧ A[k] = v) }
18 end
19 { 0≤ k ≤ n ∧ (found =⇒ 1≤k≤n ∧ A[k] = v) }
20 end
21 { (found ∧ 1≤k≤n ∧ A[k] = v) ∨ (¬found ∧ k = 0) }
22 {(found =⇒ 1≤k≤n ∧ A[k] = v) ∧ (¬found =⇒ k <1)}

1.3 Termination (1 point)

Find a suitable variant function V to prove termination. V must be such that it
decreases along all branches of the loop body, and it is nonnegative after every
iteration of the loop. You do not have to prove termination, just write a suitable
variant and informally argue why it is a suitable variant.

Solution:
The variant V , k+ [found = False], where the square brackets denote Iverson
bracket (equal to 1 if its arguments holds, and equal to 0 otherwise), is always
nonnegative and decrease in both branches (k decreases along the else branch,
and [found = True] decreases along the then branch). Hence, V can be used
to build a proof of termination for the loop.

5

2 Separation Logic (15 points)

A well-formed binary tree t is given by the grammar:

t
def
= n | (t1, t2)

So a tree value t can be either a leaf, which is a single number n, or an internal
node with a left subtree t1 and a right subtree t2.

Consider the definition of the recursive predicate tree t i which asserts that
i is a pointer to a well-formed binary tree t:

tree n i
def
= i 7→ n

tree (t1, t2) i
def
= ∃l, r · i 7→ l, r ∗ tree t1 l ∗ tree t2 r

With these definitions in mind, answer the following questions.

2.1 Predicate Satisfaction (6 points)

Consider the following program state:

Indicate in the table whether or not a given assertion is satisfied by this state.
Indicate satisfaction with a T and non-satisfaction with an F.

T or F
∃z · i 7→ z F

∃x, y · i 7→ 1, x ∗ x 7→ y, 4 ∗ true F

∃j · tree (2, 3) j ∗ true T

∃j, t · i 7→ j ∗ j 7→ 1 ∗ tree t (i+ 1) F

∃t1, t2 · tree (t1, (t2, 4)) i T

∃j, k · i 7→ j ∗ j 7→ 1 ∗ (i+ 1) 7→ k ∗ tree ((2, 3), 4) k T

2.2 Code Verification (9 points)

Give a brief proof outline of the following triple. There must be at least one
assertion between every two sub-commands.
{tree (1, t) i}
x := [i]; [i] := 2; y := [i+ 1]; dispose i; dispose x; dispose (i+ 1)
{tree t y}

6

{tree (1, t) i}
{∃l, r · i 7→ l, r ∗ tree 1 l ∗ tree t r}
..... x := [i];
{∃r · i 7→ x, r ∗ tree 1 x ∗ tree t r}
..... [i] := 2;
{∃r · i 7→ 2, r ∗ tree 1 x ∗ tree t r}
..... y := [i+ 1];
{i 7→ 2, y ∗ tree 1 x ∗ tree t y}
..... dispose i;
{(i+ 1) 7→ y ∗ tree 1 x ∗ tree t y}
{(i+ 1) 7→ y ∗ x 7→ 1 ∗ tree t y}
..... dispose x;
{(i+ 1) 7→ y ∗ tree t y}
..... dispose (i+ 1);
{tree t y}

7

3 Data flow analysis (10 points)

Consider the following program fragment (all variables are of type INTEGER):

1 from
2 x := n
3 until x ≤ 0 do
4 x := x − 1
5 if y >2 then
6 y := 1 − y
7 end
8 x := y − 4
9 if z >0 then

10 x := y + 2
11 end
12 z := x − 1
13 end
14 z := 2 ∗ y
15 print (z)

(1) (3 points) Draw the control flow graph of the program fragment and label
each elementary block.

(2) (5 points) Annotate your control flow graph with the analysis result of a
live variables analysis of the program fragment.

Solution:

8

(3) (2 points) Explain how the live variables analysis can be used for dead
code elimination, and apply this technique to the program fragment; it
suffices to state which statement(s), if any, would be removed as dead code.

Solution:

An assignment [x := a]` is dead if the value of x is not used before it
is redefined. The live variables analysis gives, for each program point,
the variables that may be live at the exit from the point. Hence if x /∈
LV exit(`), the assigment is dead.

This is the case for the block at program point 3, which is the only statement
to be be removed.

9

4 Model Checking (15 points)

Recall the semantics of LTL over finite words with alphabet P. For a word
w = w(1)w(2) · · ·w(n) ∈ P∗ with n ≥ 0 and a position 1 ≤ i ≤ n the satisfac-
tion relation |= is defined recursively as follows (where p, q ∈ P).

w, i |= p iff p = w(i)
w, i |= ¬φ iff w, i 6|= φ
w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2
w, i |= Xφ iff i < n and w, i+ 1 |= φ
w, i |= φ1 Uφ2 iff there exists i ≤ j ≤ n such that: w, j |= φ2

and for all i ≤ k < j it is the case that w, k |= φ1
w, i |= ♦ φ iff there exists i ≤ j ≤ n such that: w, j |= φ
w, i |= � φ iff for all i ≤ j ≤ n it is the case that: w, j |= φ
w |= φ iff w, 1 |= φ

4.1 Automata and LTL formulas (7 points)

Consider the automaton A (with states A,B,C) in Figure 1, over the alphabet
{p, q}. Notice that A is the initial state and B is final.

A B C

p

q

q

p

p

q

Figure 1: Automaton A over alphabet {p, q}.

For each of the following LTL formulas say whether every accepting run of A
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

(1) A |= ♦ p
No: the word q is accepted by A but does not satisfy ♦ p.

(2) A |= ♦ q
Yes: every accepting run must reach state B, and hence it must include q
somewhere.

(3) A |= ¬p ∨ X(¬q)
No: the word p q does not satisfy ¬p ∨ X(¬q), because p holds in the first
position and q holds in the second position; however, it is accepted by A.

(4) A |= �(q =⇒ � q)

Yes: after the first q is read, A is in state B, which no accepting run ever
leaves; and the only transition possible in B is reading q.

10

(5) A |= �(p U q)

Yes: when A is in state A, q must occur in the future (to reach the accepting
state B) and only p can occur before it; hence A |= p U q. After A enters
state B, it does not leave it on any accepting run; the only transition
possible in B is reading q, which trivially satisfies pU q with q occurring at
the evaluation instant.

4.2 Automata-based model checking (8 points)

Show that A |= p =⇒ ♦ q using automata-based model checking as follows.

Property automaton (4 points). Construct an automaton F that accepts
precisely the words that satisfy ¬(p =⇒ ♦ q), that is, the complement of the
property we want to verify.

Solution:
¬(p =⇒ ♦ q) is accepted by the automaton:

X Y Z
p q

p

q

p

q

Intersection automaton (4 points). Construct the intersection automaton
A × F that accepts precisely the words accepted by both A and F and show
that A×F does not accepts any words.

Solution:
No accepting state is connected.

A,X A, Y B,Z C,Z
p q p

p q p

q
q

11

5 Real Time Verification (12 points)

Recall the semantics of (a subset of) MTL over finite timed words with alphabet
P and time domain T. For a timed word

w = [σ(1), t(1)][σ(2), t(2)] · · · [σ(n), t(n)] ∈ (P ×T)∗

with n ≥ 0 and a position 1 ≤ i ≤ n the satisfaction relation |= is defined
recursively as follows for p ∈ P and J an interval of T with integer endpoints.

w, i |= p iff p = σ(i)
w, i |= ¬φ iff w, i 6|= φ
w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2
w, i |= ♦J φ iff there exists i ≤ j ≤ n such that: t(j)− t(i) ∈ J and w, j |= φ
w, i |= �J φ iff for all i ≤ j ≤ n: if t(j)− t(i) ∈ J then w, j |= φ
w |= φ iff w, 1 |= φ

As time domain T, we will consider either the natural numbers N = {0, 1, 2, . . .}
or the nonnegative real numbers R≥0.

5.1 MTL semantics (4 points)

(1) Are the MTL formulas ψ1 and ψ2:

ψ1 , ♦[1,1]

(
♦[1,1](p)

)
ψ2 , ♦[2,2](p)

equivalent over time domain N? If they are, show that their semantics
imply each other; if they are not, provide a timed word which is satisfied
by one formula and not satisfied by the other.

Solution:
They are not equivalent: the word µ = [p, 1][p, 3] is satisfied by ψ2 but not
by ψ1 which requires at least three positions in a word to satisfy it.

(2) Does the answer to the previous question (1) change over the time domain
R≥0? Explain why it does or does not change.

Solution:
The answer is still negative, and the very same word µ works for the time
domain R≥0.

5.2 Timed automata and MTL formulas (8 points)

In this section, we take R≥0 as the time domain T. Consider the timed automa-
ton T (with locations A,B,C) in Figure 2, over the alphabet {p, q} and with
clocks x and y. Notice that A is the initial location and C is final.
For each of the following MTL formulas say whether every accepting run of T
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

12

A B C

p
x < 1

q
x = 1

p
y < 1

q
x > 2
x := 0

q
x < 1

Figure 2: Timed automaton T over alphabet {p, q} with clocks x and y.

(1) T |= ♦(0,2) q

No: the timed word [q, 1][q, 10] is accepted by T but it does not satisfy
♦(0,2) q because q does not occur in the interval (0, 2) relative to the first

position where the formula is evaluated (according to the semantics given
above).

(2) T |= �[0,∞)

(
♦(1,∞) p

)
No: the timed word [q, 1] [q, 2.2] is accepted by T but it does not satisfy

�[0,∞)

(
♦(1,∞) p

)
because p never occurs..

(3) T |= �[0,∞)

(
q =⇒ �[0,∞)(¬p)

)
Yes: after the first occurrence of q at time 1 (which appears in every ac-
cepted word), p cannot happen anymore, thus trivially satisfying�[0,∞)(¬p).
In fact, clock y has the value 1 when entering location B, since it is syn-
chronized with x; therefore, the self loop on location B cannot be taken.
Finally, there are no accessible other transitions where p may occur.

(4) T |= ♦(2,∞)(q) ∧ �(3,∞)(¬q)

No: the timed word [q, 1] [q, 10] [q, 10.3] is accepted by T but it does not
satisfy �(3,∞)(¬q), and hence neither the whole MTL formula ♦(2,∞)(q) ∧
�(3,∞)(¬q), even if it satisfies its first conjunct.

13

	Axiomatic semantics (18 points)
	Program semantics (2 points)
	Partial correctness (15 points)
	Termination (1 point)

	Separation Logic (15 points)
	Predicate Satisfaction (6 points)
	Code Verification (9 points)

	Data flow analysis (10 points)
	Model Checking (15 points)
	Automata and LTL formulas (7 points)
	Automata-based model checking (8 points)

	Real Time Verification (12 points)
	MTL semantics (4 points)
	Timed automata and MTL formulas (8 points)

