
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C. A. Furia, Dr. S. Nanz Software Verification

Software Verification – Exam

ETH Zürich

15 December 2014

Surname, first name: ...

Student number: ..

I confirm with my signature that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

Signature: ...

Directions:

• Exam duration: 1 hour 45 minutes.

• Except for a dictionary you are not allowed to use any supplementary
material.

• All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

• Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

• Please write legibly! We will only correct solutions that we can read.

• Manage your time carefully (take into account the number of points for
each question).

• Please immediately tell the exam supervisors if you feel disturbed during
the exam.

Good luck!

Question Available points Your points

1) Axiomatic semantics 8

2) Separation logic 12

3) Data Flow Analysis 9

4) Model checking 9

5) Software model checking 11

Total 49

2

[This page is intentionally left blank.]

3

1 Axiomatic semantics (8 points)

Consider the following annotated program, where a and b are distinct arrays
(indexed from 0) both of length n, k is an integer variable, and x mod y denotes
the remainder of the integer division of x by y. Note that the else branch is
empty.

{ n > 0 ∧ ∀ i ∶ 0 ≤i <n Ô⇒ a[i] = b[i] = 0 }
1 from
2 k := 0
3 until k = n loop
4 if k mod 3 = 0 then
5 b[k] := a[k] + 1
6 else
7 end
8 k := k + 1
9 end
{ ∀ i ∶ 0 ≤ i < n ∧ i mod 3 = 0 Ô⇒ b[i] = 1 }

Prove that the above triple (precondition, program, postcondition) is a the-
orem of Hoare’s axiomatic system for partial correctness. In other words, prove
the program correct with respect to the given specification.

4

Solution:

1 { n > 0 ∧ ∀ i ∶ 0 ≤i <n Ô⇒ a[i] = b[i] = 0 }
2 from
3 { n ≥ 0 }
4 { 0 ≤ 0 ≤ n ∧

5 ∀ i ∶ 0 ≤ i < 0 ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

6 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
7 k := 0
8 { 0 ≤ k ≤ n ∧

9 ∀ i ∶ 0 ≤ i < k ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

10 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
11 until k = n loop
12 { 0 ≤ k < n ∧

13 ∀ i ∶ 0 ≤ i < k ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

14 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
15 if k mod 3 = 0 then
16 { −1 ≤ k < n ∧ k mod 3 = 0 ∧

17 ∀ i ∶ 0 ≤ i < k ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

18 k mod 3 = 0 Ô⇒ a[k] + 1 = 1 ∧

19 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
20 b[k] := a[k] + 1
21 { −1 ≤ k < n ∧

22 ∀ i ∶ 0 ≤ i < k ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

23 k mod 3 = 0 Ô⇒ b[k] = 1 ∧

24 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
25 else
26 { −1 ≤ k < n ∧ k mod 3 ≠0 ∧

27 ∀ i ∶ 0 ≤ i < k ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

28 k mod 3 = 0 Ô⇒ b[k] = 1 ∧

29 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
30 end
31 { −1 ≤ k < n ∧

32 ∀ i ∶ 0 ≤ i < k ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

33 k mod 3 = 0 Ô⇒ b[k] = 1 ∧

34 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
35 { 0 ≤ k + 1 ≤ n ∧

36 ∀ i ∶ 0 ≤ i < k + 1 ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

37 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
38 k := k + 1
39 { 0 ≤ k ≤ n ∧

40 ∀ i ∶ 0 ≤ i < k ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

41 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
42 end
43 { k = n ∧

44 ∀ i ∶ 0 ≤ i < n ∧ i mod 3 = 0 Ô⇒ b[i] = 1 ∧

45 ∀ i ∶ 0 ≤ i < n Ô⇒ a[i] = 0 }
46 { ∀ i ∶ 0 ≤ i < n ∧ i mod 3 = 0 Ô⇒ b[i] = 1 }

5

2 Separation Logic (12 points)

2.1 Linked List Proof (7 points)

We can assert that a heap contains a linked list by using the following inductively
defined predicate:

list([], i) ⇐⇒ emp ∧ i = nil
list(a ∶∶ as, i) ⇐⇒ ∃j. i↦ a, j ∗ list(as, j)

where nil is a constant used to terminate the list.

Give a proof outline for the following triple using the list predicate and the proof
rules of separation logic:

{list(a ∶∶ as, x)}
y := cons(0,0);

temp1 := [x];

temp2 := [x+1];

[y] := temp1;

[y+1] := nil;

dispose(x);

dispose(x+1);

x := temp2;

{list(as, x) ∗ list(a ∶∶ [], y)}

6

Sample solution:

{list(a::as,x)}

y := cons(0,0);

{list(a::as,x) * y|->0,0}

{EX j. x|->a,j * list(as,j) * y|->0,0}

{x|->a,j * list(as,j) * y|->0,0}

temp1 := [x];

{x|->a,j * list(as,j) * y|->0,0 /\ temp1 = a}

temp2 := [x+1];

{x|->a,j * list(as,j) * y|->0,0 /\ temp1 = a /\ temp2 = j}

[y] := temp1;

{x|->a,j * list(as,j) * y|->temp1,0 /\ temp1 = a /\ temp2 = j}

[y+1] := nil;

{x|->a,j * list(as,j) * y|->temp1,nil /\ temp1 = a /\ temp2 = j}

dispose(x);

{x+1|->j * list(as,j) * y|->temp1,nil /\ temp1 = a /\ temp2 = j}

dispose(x+1);

{list(as,j) * y|->temp1,nil /\ temp1 = a /\ temp2 = j}

{EX j. list(as,j) * y|->temp1,nil /\ temp1 = a /\ temp2 = j}

{list(as,temp2) * y|->temp1,nil /\ temp1 = a}

x := temp2;

{list(as,temp2) * y|->temp1,nil /\ temp1 = a /\ x = temp2}

{list(as,x) * y|->temp1,nil /\ temp1 = a}

{list(as,x) * y|->a,nil}

{list(as,x) * y|->a,nil * list([],nil)}

{list(as,x) * list(a::[],y)}

7

2.2 Satisfaction of Assertions (5 points)

For each separation logic assertion below, draw a program state (i.e. store and
heap) that satisfies it.

(a). (x↦ 6,7) ∗ ¬(x↦ 6,7)

Sample solution:

Store Heap

x

y

6 7

8

(b). (x↦ 6,7) ∧ (y ↦ 6,7)

Sample solution:

Store Heap

x

y

6 7

8

(c). emp⇒ x = y

Sample solution:

Store Heap

x

y

5

5

(d). ∃i. x↦ i ∗ i↦ i

Sample solution:

Store Heap

x

9

3 Data Flow Analysis (9 points)

Consider the following program fragment, which computes the value of the mth
Fibonacci number for m ≥ 1.

f0 := 0
f1 := 1
if m ≤ 1 then
f2 := m

else
from
i := 2

until i > m loop
i := i + 1
f2 := f0 + f1
f0 := f1
f1 := f2

end
end
print (f2)

(a). Draw the control flow graph of the program fragment and label each ele-
mentary block. (2 points)

(b). Annotate your control flow graph with the analysis result of a Reaching
Definitions analysis of the program fragment, considering the variables
f0 , f1 , f2 , i. (5 points)

f0 := 0
1

f0:?,f1:?,f2:?,i:?

f1 := 1
2

f0:1,f1:?,f2:?,i:?

m <= 1
3

f0:1,f1:2,f2 :?,i:?

i := 2
5

i > m
6

i := i + 1
7

f2 := f0 + f1
8

f0 := f1
9

f1 := f2
10

f2 := m
4

f0:1,f1:2,f2 :?,i:?

print (f2)
11

f0:1,f1:2,f2 :?,i:?

f0:1,f0:9,f1:2,f1:10,f2:?,f2:8,i:5,i:7

f0:1,f0:9,f1:2,f1:10,f2:?,f2:8,i:5,i:7

f0:1,f0:9,f1:2,f1:10,f2:?,f2:8,i:7

f0:1,f0:9,f1:2,f1:10,f2:8,i:7

f0:9,f1:2,f1:10,f2:8,i:7

f0:1,f0:9,f1:2,f1:10,
f2:?,f2:4,f2:8,i:?,i:5,i:7

10

(c). Copy Propagation, an application of the Reaching Definitions analysis, is
defined as follows:

A use of a variable x at a program point `′ can be replaced by y
if [x := y]` is the only definition of x that reaches `′ and y is not
modified between ` and `′.

Is there a possibility for copy propagation in the program fragment? In
justifying your answer, use your analysis result. (2 points)

There is no possibility for copy propagation in the program fragment. The
variables f0 , f1 , f2 , i are used only in blocks 6-11, and in none of these
blocks copy propagation can be applied: for blocks 6-9 and 11, the analysis
result shows that each of the used variables in the blocks could be reached
by more than one definition; and for block 10, while it is reached by only
one definition, [f2 := f0 + f1]8, that definition is not a copy statement.

11

4 Model Checking (9 points)

Recall the semantics of LTL over finite words with alphabet P. For a word
w = w(1)w(2)⋯w(n) ∈ P∗ with n ≥ 0 and a position 1 ≤ i ≤ n the satisfaction
relation ⊧ is defined recursively as follows (where p, q ∈ P).

w, i ⊧ p iff p = w(i)
w, i ⊧ ¬φ iff w, i /⊧ φ
w, i ⊧ φ1 ∧ φ2 iff w, i ⊧ φ1 and w, i ⊧ φ2
w, i ⊧ Xφ iff i < n and w, i + 1 ⊧ φ
w, i ⊧ φ1 Uφ2 iff there exists i ≤ j ≤ n such that: w, j ⊧ φ2

and for all i ≤ k < j it is the case that w,k ⊧ φ1
w, i ⊧◇ φ iff there exists i ≤ j ≤ n such that: w, j ⊧ φ
w, i ⊧ ◻ φ iff for all i ≤ j ≤ n it is the case that: w, j ⊧ φ
w ⊧ φ iff w,1 ⊧ φ

4.1 Automata and LTL formulas (5 points)

Consider the automaton A (with states A,B,C,D) in Figure 1, over the alpha-
bet {p, q}. Notice that A is the initial state, A and D are final states, and the
automaton is nondeterministic.

A BCD

p

p

q

q

q

p

Figure 1: Automaton A over alphabet {p, q}.

For each of the following LTL formulas say whether every accepting run of A
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

(1) A ⊧ ◻(◇ q)
No: the word w = pp is accepted by A, but no letter q appears in it; hence
◇ q does not hold.

(2) A ⊧ ◻(p Ô⇒ X p)
No: the word w = q p is accepted by A, but w,2 /⊧ X p because there are no
letters after the unique p in w.

(3) A ⊧ p Ô⇒ X p

Yes: every word w accepted by A such that p holds in the first position
drives A into state B, from where a p must follow for w to be accepted.

(4) A ⊧◇(◻ q)
No: the empty word ε is accepted by A, but ε does not satisfy formula
◇(◻ q), which requires a valid position in the word (ε has none, that is

12

n = 0). Another counterexample is the word w = pp, where q does not
appear.

(5) A ⊧ ◻(p Ô⇒ (pU q))
No: the word w = pp is accepted by A, but w,2 /⊧ pU q because no q occurs
eventually.

4.2 Automata-based model checking (4 points)

Consider the LTL formula:

φ ≜ ◻(r Ô⇒ X (q U (¬r ∧Xp)))

Property automaton. Construct an automaton F that accepts precisely the
words that satisfy φ.

Solution:
An edge with two letters denote a double transition (one for each of the letters).

X Y Z

p, q

r

q

p, q

p

13

5 Software model checking (11 points)

Consider the following code snippet C, where x and y are integer variables, and
z is a Boolean variable.

1 assume z = True end
2 if x > y and x ≤ 0 then
3 z := True
4 else
5 z := False
6 end
7 assert y ≤ 0 or not z end

Recall that:

• Pred (exp) denotes the weakest under-approximation of the expression exp
that is expressible as a Boolean combination of the given predicates.

• The predicate abstraction of an assume instruction assume exp end is
assume not Pred (not exp)end followed by a parallel conditional assign-
ment updating the predicates with respect to the original assume.

• The predicate abstraction of an assert instruction assert exp end simply
is assert Pred (exp) end, provided that exp can be approximated exactly
by means of the available predicates (which is the case in this exercise).

5.1 Boolean abstractions (8 points)

Build the Boolean abstraction A of the code snippet C above with respect to
the predicates:

p ≡ x > y
q ≡ y > 0
r ≡ z = True

Solution:
After the usual simplifications, the predicate abstraction A is:

1 assume r end
2 if ? then
3 assume p and not q end
4 r := True
5 else
6 r := False
7 end
8 assert not q or not r end

5.2 Traces (3 points)

Trace classification: Using the table below, classify every possible initial
abstract state I into the following categories (note that, due to nondeterminism,
a state may belong to more than one category):

14

• invalid : I may lead to a trace that is infeasible in A;

• spurious counterexample: I may lead to an error trace in A that is infea-
sible in C (that is, it is invalid in C);

• error : I may lead to an error trace in A that is feasible in C (that is, it is
also an error in C);

• valid : I may lead to a valid (without errors) trace in A.

Solution:

initial state I classification (invalid, spurious, error, valid)

{p, q, r} valid or invalid

{not p, q, r} valid or invalid

{p, not q, r} valid

{not p, not q, r} valid or invalid

{p, q, not r} invalid

{not p, q, not r} invalid

{p, not q, not r} invalid

{not p, not q, not r} invalid

Every initial state I with the component “not r” is invalid because of the
initial assume in A. The remaining states are valid since they can lead to the
error-free abstract traces listed below. Furthermore, the initial states {p, q, r},
{not p, q, r}, and {not p, not q, r} are also invalid because the nondetermin-
istic conditional if ? may lead to a violation assume p and not q end, that is
to an infeasible trace.

{p, q, r}
[not (p and not q)]

{p, q, r}
r := False

{p, q, not r}
assert not q or not r end

{not p, q, r}
[not (p and not q)]

{not p, q, r}
r := False

{not p, q, not r}
assert not q or not r end

15

{p, not q, r}
[p and not q]

{p, not q, r}
r := True

{p, not q, r}
assert not q or not r end

{not p, not q, r}
[not (p and not q)]

{not p, not q, r}
r := False

{not p, not q, not r}
assert not q or not r end

Implications for the concrete program: Based on the classification,
what do you conclude about the correctness of the concrete program C? Please
justify your answer.

Solution:
Since A determines a set of abstract traces that are an over-approximation of
C’s set of concrete traces, we can conclude that C is correct because A is.

16

	Axiomatic semantics (8 points)
	Separation Logic (12 points)
	Linked List Proof (7 points)
	Satisfaction of Assertions (5 points)

	Data Flow Analysis (9 points)
	Model Checking (9 points)
	Automata and LTL formulas (5 points)
	Automata-based model checking (4 points)

	Software model checking (11 points)
	Boolean abstractions (8 points)
	Traces (3 points)

