
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Problem Sheet 1: Axiomatic Semantics

Chris Poskitt
ETH Zürich

Starred exercises (∗) are more challenging than the others.

1 Partial and Total Correctness

Recall the Hoare triple from lectures,

{pre} P {post}

where P denotes some program instructions, and pre, post are respectively pre- and postcondi-
tions (assertions about the program state). The triple denotes a specification of the program,
with respect to the given pre- and postconditions. Such a specification, in this course, can
be interpreted in one of two different ways. If the specification holds in the sense of partial
correctness, we will write:

|= {pre} P {post}

and if it holds in the sense of total correctness, we will write:

|=tot {pre} P {post}

1.1 Exercises

Define, in English, the meaning of:

i. |= {pre} P {post}

ii. |=tot {pre} P {post}

Which senses of correctness (|=, |=tot, or neither) do the following triples hold under? Explain
your judgements, giving counterexamples when they do not hold. (Formal proofs are not yet re-
quired. Assume a standard semantics for the program constructs. Assume that integer overflows
cannot occur.)

iii. {x = 21 ∧ y = 5} skip {y = 5}

iv. {y = 5} skip {x = 21 ∧ y = 5}

v. {x > 10} x := 2 ∗ x {x > 21}

vi. {x ≥ 0 ∧ y > 1} while x < y do x := x ∗ x {x ≥ y}

vii. {x = 5} while x > 0 do x := x + 1 {x < 0}

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

2 A Hoare Logic for Partial Correctness

In the previous section we reasoned about the correctness of triples in an ad hoc way. In this
section we will be more rigorous, instead proving such triples using a formal system of proof
rules called a Hoare logic.

In particular, we will consider a Hoare logic for partial correctness. If a Hoare triple
{pre} P {post} can be proven using the rules of this Hoare logic, we will write:

` {pre} P {post}.

Provability and Validity
Note carefully the distinction between `, provability, and |=, validity. An im-
portant property, called soundness, is that every triple provable in a Hoare logic
indeed holds in the desired sense of correctness. For our partial correctness Hoare
logic, you can safely assume that it is sound, i.e.:

` {pre} P {post} implies |= {pre} P {post}.

Figure 1 contains the proof rules of a Hoare logic for partial correctness that should be
used in the exercises overleaf. Let x denote a program variable, and e denote a side-effect free
expression. Let the lower-case symbols p, p′, q, q′, r denote assertions, b a Boolean expression,
and the upper-case symbols P,Q arbitrary programs.

A triple can be proven in this Hoare logic if it can be instantiated from an axiom ([ass] or
[skip]), or if it can be derived as the conclusion of an inference rule ([comp], [if], [while], or
[cons]). (A reminder of how to apply axioms and inference rules is given in the appendix of this
problem sheet.)

[ass] ` {p[e/x]} x := e {p}

[skip] ` {p} skip {p}

` {p} P {r} ` {r} Q {q}
[comp]

` {p} P ; Q {q}

` {b ∧ p} P {q} ` {¬b ∧ p} Q {q}
[if]

` {p} if b then P else Q {q}

` {b ∧ p} P {p}
[while]

` {p} while b do P {¬b ∧ p}

p⇒ p′ ` {p′} P {q′} q′ ⇒ q
[cons]

` {p} P {q}

Figure 1: A Hoare logic for partial correctness

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

2.1 Exercises

In the exercises that require a proof (i.e. `), you should use the proof rules of the Hoare logic
in Figure 1.

Hint: the appendix contains a recap on the different types of proof rules—axioms and inference
rules—and how to apply them in order to prove a Hoare triple.

i. What does the rule of consequence, [cons], allow us to do in proofs? Why must we show
that p⇒ p′ and q′ ⇒ q are valid implications?

ii. Explain the intuition behind the axiom of assignment, [ass].

iii. Show that ` {x > 0} x := x + 1; skip {x > 1}.

iv. Show that ` {x = a ∧ y = b} t := x; x := x + y; y := t {x = a + b ∧ y = a}.

v. Explain the intuition behind the proof rule [while].

vi. Let INV denote in + m = 250. Show that:

` {INV } while (i > 0) do m := m + n; i := i− 1 {INV }.

vii. Define a proof rule for the Pascal construct:

repeat P until b

without reference to the [while] rule.

Hint: the loop body is always executed at least once.

viii. A new command has been added to the language: surprise. It has a very unusual
semantics. Upon execution, surprise randomly chooses a variable in the program state,
and randomly changes its assignment. Propose and justify an axiom for this command.

ix. (∗) Propose an alternative, “forward” axiom of assignment in which a substitution is not
applied to the precondition, i.e. replace the question marks in:

` {p} x := e {??}.

Hint: the postcondition contains an existential quantifier.

3

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Appendix: Applying Proof Rules

We review in this appendix how to prove triples in Hoare logics through the application of
axioms and inference rules.

The proof rules [skip] and [ass] of Figure 1 are examples of axioms1. Axioms describe
“self-evident” facts about programs, in the sense that they can be applied without additional
reasoning. A triple {pre} P {post} is proven in a Hoare logic, denoted ` {pre} P {post}, if it can
be instantiated from such an axiom. For example, from the [skip] axiom, we can immediately
prove any triple for skip that has the same pre- and postcondition, for example:

` {x = 5} skip {x = 5}

` {true} skip {true}

Most triples, of course, cannot simply be instantiated from axioms. For these, we must apply
inference rules, such as [comp], [if], [while], and [cons] from Figure 1. Inference rules consist
of at least one premise (given above the horizontal line), and exactly one conclusion (given
underneath). If we can prove the premises, then we can deduce the triple in the conclusion. For
example, to prove the triple:

{x > 0} x := x + 1; skip {x > 1}

simply instantiate [comp] with this triple as the conclusion, and then proceed to prove the
premises:

` {x > 0} x := x + 1 {r}

and ` {r} skip {x > 1}.

Here r is some assertion, to be determined, that holds at the midpoint of the two subprograms.
Visualising proofs is a matter of personal taste. For smaller proofs, I usually find it helpful

to visualise them as proof trees, with axiom instantiations as the leaves, applications of inference
rules as the body, and the triple we want to prove as the root. For example, the above could be
visualised as follows (note that we have taken r to be x < 1):

??[??]
` {x > 0} x := x + 1 {x > 1}

[skip]
` {x > 1} skip {x > 1}

[comp]
` {x > 0} x := x + 1; skip {x > 1}

(The left-hand side of this proof tree is left incomplete because it forms part of an exercise!)
An inference rule we should give some special attention to is [cons], the rule of consequence.

Two of its premises require showing—outside of the Hoare logic—that some logical implications
are valid. We will discuss this further in the exercises.

1More precisely, axiom schemata, but most authors drop the latter part in their terminology.

4

	Partial and Total Correctness
	Exercises

	A Hoare Logic for Partial Correctness
	Exercises

