
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Problem Sheet 2: Auto-Active Verification

Chris Poskitt∗

ETH Zürich

“Beware of bugs in the above code; I have only proved it correct, not tried it.”
– Donald E. Knuth

Starred exercises (∗) are more challenging than the others.

1 Boogie

In this first set of exercises, we will work directly with Boogie [1], the intermediate verifica-
tion language and automatic verification framework developed by Microsoft Research. For an
introduction to the language and verifier, consult the following slides and manual:

• The lecture slides:

http://se.inf.ethz.ch/courses/2015b_fall/sv/slides/05-AutoActiveVerification.

pdf

• Boogie manual:

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

1.1 Setting Up

Boogie can be interacted with through your web browser:

http://rise4fun.com/boogie

Should you prefer, you can also install it locally:

http://research.microsoft.com/en-us/projects/boogie/

∗With input from Nadia Polikarpova and Julian Tschannen.

1

http://se.inf.ethz.ch/courses/2015b_fall/sv/slides/05-AutoActiveVerification.pdf
http://se.inf.ethz.ch/courses/2015b_fall/sv/slides/05-AutoActiveVerification.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://rise4fun.com/boogie
http://research.microsoft.com/en-us/projects/boogie/


ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

1.2 Exercises

i. Prove the following specification in Boogie:

{true} t := x; x := x + y; y := t {x = x′ + y′ ∧ y = x′}

where x′, y′ respectively denote the values of x and y in the pre-state.

ii. Consider the Boogie program ArraySum which is supposed to recursively compute the sum
of array elements:

http://rise4fun.com/Boogie/2kR

Fix the program and then verify it in Boogie.

Hint: don’t forget about loop invariants! Without an invariant, any loop in Boogie is
treated as equivalent to assigning arbitrary values to program variables.

iii. Implement and verify the algorithm FindZero (its signature is given in http://rise4fun.

com/Boogie/SciP), that linearly searches an array for the element 0:

Input: an integer array a, and its length N .

Output: an index k ∈ {0, . . . , N −1} into the array a such that a[k] = 0;
otherwise k = −1.

The specification should guarantee that if there exists an array element a[i] = 0 with
0 ≤ i < N , then FindZero will always return a k such that k ≥ 0 and a[k] = 0.

iv. (∗) Copy the procedure FindZero you wrote in part (iv), rename it to FindZeroPro, and
add the following two preconditions:

requires (forall i: int :: 0 <= i && i < N ==> 0 <= a[i]);

requires (forall i: int :: 0 <= i-1 && i < N ==> a[i-1]-1 <= a[i]);

These additional preconditions require that along the array, values never decrease by
more than one. Adapt your linear search algorithm such that after an iteration of its loop,
instead of incrementing the current index k by 1, it now increments it by a[k]. Verify that
the procedure still establishes the same postconditions as in (iv).

Hint: you will need to prove that all array values between a[k] and a[k+a[k]] are non-zero
(i.e. that 0-values are not skipped over by the search) and use this property in the loop.
For this you will need to write more than simply a loop invariant, e.g. some “ghost” (or
“proof”) code.

v. (∗) Take a look at the Boogie program BinarySearch which is supposed to perform a
binary search1:

http://rise4fun.com/Boogie/Ilf

Debug the implementation and add the missing loop invariants.

1See: http://en.wikipedia.org/wiki/Binary_search_algorithm

2

http://rise4fun.com/Boogie/2kR
http://rise4fun.com/Boogie/SciP
http://rise4fun.com/Boogie/SciP
http://rise4fun.com/Boogie/Ilf
http://en.wikipedia.org/wiki/Binary_search_algorithm


ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

2 AutoProof

This second set of exercises is concerned with AutoProof [2], an auto-active verifier for programs
written in (a subset of) the object-oriented language Eiffel. The tool takes an Eiffel program
annotated with contracts (i.e. executable pre-/postconditions, class invariants, intermediate as-
sertions), and translates it into a Boogie program for verification. Errors returned by the Boogie
verifier are traced back to the relevant parts of the original Eiffel program (see Figure 1).

AutoProof

Boogie

SMT Solver

Eiffel program

Eiffel errors

Boogie
file

Boogie
errors

Verification
conditions

Valid
/ invalid

User

Figure 1: The AutoProof workflow

Extensive documentation (including a manual, tutorial, and software repository) is available
online:

http://se.inf.ethz.ch/research/autoproof/

2.1 Exercises

The Eiffel programs for the following exercises are all available online in a web-based interface
to AutoProof. Simply follow the given links for each exercise, edit the code and contracts in
your browser, then hit the “Verify” button to run the tool. Note that the web interface to
AutoProof does not permanently save your changes, so please make sure to save local copies of
your solutions.

i. Consider the class WRAPPING COUNTER in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task1

The method increment increases its integer input by one, except if the input is 59, in
which case it wraps it round to 0. Verify the class in AutoProof without changing the im-
plementation, i.e. adding only the necessary preconditions. Strengthen the postcondition
further as suggested in the comments, and check that the proof still goes through.

ii. In the axiomatic semantics problem sheet, we encountered several simple program speci-
fications expressed as Hoare triples. Using the class AXIOMATIC SEMANTICS in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task2

write some simple contract-equipped methods and show the following in AutoProof:

3

http://se.inf.ethz.ch/research/autoproof/
http://cloudstudio.ethz.ch/e4pubs/#sv-task1
http://cloudstudio.ethz.ch/e4pubs/#sv-task2


ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

(A) |= {x = 21 ∧ y = 5} skip {y = 5}
(B) |= {x > 10} x := 2 ∗ x {x > 21}
(C) |= {x ≥ 0 ∧ y > 1} while x < y do x := x ∗ x {x ≥ y}
(D) |= {x = 5} while x > 0 do x := x + 1 {x < 0}
(E) |= {x = a ∧ y = b} t := x; x := x + y; y := t {x = a + b ∧ y = a}
(F) |= {in + m = 250} while (i > 0) do m := m + n; i := i− 1 {in + m = 250}

Hint: Eiffel does not offer a while construct. Try experimenting with from-until-loop in-
stead, as well as if-then-else with recursion (note that recursive calls should be surrounded
by wrap and unwrap so that the verifier checks the class invariant—see the code comments).

iii. Consider the class MAX IN ARRAY in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task3

What does the max in array method do? Prove the class correct in AutoProof by deter-
mining a suitable precondition and loop invariant.

Hint: you might find Eiffel’s across-as-all loop construct2 helpful for expressing loop
invariants.

iv. (∗) Consider the class SUM AND MAX in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task4

What does the method sum and max do? What can you prove about it using AutoProof?

v. (∗∗) Consider the class LCP in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task5

The method lcp implements a Longest Common Prefix (LCP) algorithm3 with input and
output as follows:

Input: an integer array a, and two indices x and y into this array.

Output: length of the longest common prefix of the subarrays of a
starting at x and y respectively.

What can you prove about the class in AutoProof?

References

[1] K. Rustan M. Leino. This is Boogie 2. Technical report, 2008. http://research.

microsoft.com/en-us/um/people/leino/papers/krml178.pdf.

[2] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Nadia Polikarpova. AutoProof:
Auto-active functional verification of object-oriented programs. In Proc. TACAS 2015,
volume 9035 of LNCS, pages 566–580. Springer, 2015. http://se.inf.ethz.ch/people/

tschannen/publications/tfnp-tacas15.pdf.

2See: http://bertrandmeyer.com/2010/01/26/more-expressive-loops-for-eiffel/
3From the FM 2012 verification challenge.

4

http://cloudstudio.ethz.ch/e4pubs/#sv-task3
http://cloudstudio.ethz.ch/e4pubs/#sv-task4
http://cloudstudio.ethz.ch/e4pubs/#sv-task5
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://se.inf.ethz.ch/people/tschannen/publications/tfnp-tacas15.pdf
http://se.inf.ethz.ch/people/tschannen/publications/tfnp-tacas15.pdf
http://bertrandmeyer.com/2010/01/26/more-expressive-loops-for-eiffel/

	Boogie
	Setting Up
	Exercises

	AutoProof
	Exercises


