Software Verification — Problem Sheets

ETHZ D-INFK
Autumn 2015

Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Problem Sheet 3: Data Flow Analysis
Sample Solutions

Chris Poskitt*
ETH Ziirich

Starred exercises (x) are more challenging than the others.

1 Reaching Definitions Analysis

i-ii. The control flow graph and the results of the reaching definitions analysis are given in the

diagram below:

i x:?7y:?

x:1y:?

R
¥ x:1 x:7y:?y:3y:6

2 >0
X l : x:1 x:7y:?y:3y:6
3 x:1x:7y:?y:3y:6 8 y x:1x:7y:?7y:3y:6
Y =20 T X=X-1 | g oyay:
x:1x:7y:3 l x:8y:?7y3y:6
4 : x:1 x:7y:3

y>10 x:1 x:7y:3

‘/Xlx7y3\6‘ x:1x:7y:3

=X+
y=x+2 x:1x:7y:6

X =x-1

\‘{xﬁﬁ%yﬁ

x=x1 | y:3y:6

iii. We give the use-definition information for x and y in the table below (you could also

annotate the diagram above with additional arrows).

*Solutions adapted from an earlier version of the course, when Stephan van Staden was the teaching assistant

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification — Problem Sheets
Autumn 2015

Program Block X y
1 0 0
2 {1,7} 0
3 1] {7,3,6}
4) {3}
5 {1,7} [
6 {1,7} 0
7 {1,5,7} [
8 {1,7} 0

2 Live Variables Analysis

i. Below we identify the blocks of the program:

x 5= 3

[x := x-1]?

[x := 43

while [y < x]* do
y =y

end

[y :=0°

ii. The system of equations for a live variable analysis are as follows:

1) —{=x})uiy}
LVexit (2) — {x}) U {x}
—{x}

U{x,y}

= (LVexit(5) — {y}) U {x, v}

LVentry (1) = (LVexit
LVcntry(Z) = (

LVentry (3) = LVexit(
LVentry(4) = LVexit(
LVentry(B)

LVentry(6) = LVexit (6) — {y}

iii. We begin the iteration by initialising every set to (). Then, we iteratively update the sets
by applying the equation system above. (For simplicity, the columns omit sets when a
particular iteration does not update the previous value.)

ETHZ D-INFK

Software Verification — Problem Sheets
Autumn 2015

Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

LV Sets Iterations — Final Values
Lventry(l) (D {y} {Y}
LWVenury(2) || 0 | {x} {x,y} {xy}
Lventry(?)) @ {Y} {Y}
LVentry (4) @ {X7 y} {X’ Y}
Lventry(5) @ {Xa Y} {Xa y}
LVentry (6) || 0 0

LV exit (1) 0 {x} {x, v} {x,y}
LVexit(2) @ {y} {y}
Lchit(S) @ {Xv y} {X7 y}
LVexit (4) @ {X7 Y} {X’ y}
LVexit(5) @ {Xv Y} {X7 y}
LVexit(6) @ @

iv. We eliminate blocks b of the form [x :

while [y < x]* do

[y = y*x

end

v. (*) The program is not yet free of dead variables: x in block 1 is still dead. We strengthen

]5

the definition of LVenry:

Do) = {

The rationale is this: if a block assigns to a variable that is not live afterwards, then it
must be eliminated, and should not influence the analysis by adding the variables it reads

to the live variable set.

Performing a chaotic iteration with this new equation yields the following results:

with which we can eliminate all of the dead code in the program:

LV Sets Final Values
Lventry(l) {y}
LVentry (2) {y}
Lventry (3) {y}
chntry (4) {Xa y}
LV entry (5) {x.y}
L\/cntry (6) (Z)

LVexit (1) {v}
LV exit (2) {Y}
LV exit (3) {x,y}
LVexit (4) {x,y}
LVexit(5) {X, y}
LV exit (6) 0
[x := 43
while [y < x]* do

[y = yeal?
end

...]b if x is not an element of LV i (b):

(LVexit (b) — leLV (b)) U geny (b)
LVexit (b)

if Killpy (b) € IV et ()

	Reaching Definitions Analysis
	Live Variables Analysis

