Problem Sheet 3: Data Flow Analysis Sample Solutions

Chris Poskitt* ETH Zürich

Starred exercises (*) are more challenging than the others.

1 Reaching Definitions Analysis

i-ii. The control flow graph and the results of the reaching definitions analysis are given in the diagram below:

iii. We give the use-definition information for x and y in the table below (you could also annotate the diagram above with additional arrows).

^{*}Solutions adapted from an earlier version of the course, when Stephan van Staden was the teaching assistant.

Program Block	х	У
1	Ø	Ø
2	$\{1,7\}$	Ø
3	Ø	$\{?, 3, 6\}$
4	Ø	{3}
5	$\{1,7\}$	Ø
6	$\{1,7\}$	Ø
7	$\{1, 5, 7\}$	Ø
8	$\{1,7\}$	Ø

2 Live Variables Analysis

i. Below we identify the blocks of the program:

$$\begin{aligned} & [\mathbf{x} & := & \mathbf{y}]^1 \\ & [\mathbf{x} & := & \mathbf{x} - \mathbf{1}]^2 \\ & [\mathbf{x} & := & \mathbf{4}]^3 \\ & \text{while} & [\mathbf{y} < & \mathbf{x}]^4 \text{ do} \\ & & [\mathbf{y} & := & \mathbf{y} + \mathbf{x}]^5 \\ & \text{end} \\ & [\mathbf{y} & := & \mathbf{0}]^6 \end{aligned}$$

ii. The system of equations for a live variable analysis are as follows:

$$\begin{split} &\operatorname{LV_{entry}}(1) = (\operatorname{LV_{exit}}(1) - \{\mathtt{x}\}) \cup \{\mathtt{y}\} \\ &\operatorname{LV_{entry}}(2) = (\operatorname{LV_{exit}}(2) - \{\mathtt{x}\}) \cup \{\mathtt{x}\} \\ &\operatorname{LV_{entry}}(3) = \operatorname{LV_{exit}}(3) - \{\mathtt{x}\} \\ &\operatorname{LV_{entry}}(4) = \operatorname{LV_{exit}}(4) \cup \{\mathtt{x},\mathtt{y}\} \\ &\operatorname{LV_{entry}}(5) = (\operatorname{LV_{exit}}(5) - \{\mathtt{y}\}) \cup \{\mathtt{x},\mathtt{y}\} \\ &\operatorname{LV_{entry}}(6) = \operatorname{LV_{exit}}(6) - \{\mathtt{y}\} \\ &\operatorname{LV_{exit}}(1) = \operatorname{LV_{entry}}(2) \\ &\operatorname{LV_{exit}}(2) = \operatorname{LV_{entry}}(3) \\ &\operatorname{LV_{exit}}(3) = \operatorname{LV_{entry}}(4) \\ &\operatorname{LV_{exit}}(4) = \operatorname{LV_{entry}}(5) \cup \operatorname{LV_{entry}}(6) \\ &\operatorname{LV_{exit}}(5) = \operatorname{LV_{entry}}(4) \\ &\operatorname{LV_{exit}}(6) = \emptyset \end{split}$$

iii. We begin the iteration by initialising every set to \emptyset . Then, we iteratively update the sets by applying the equation system above. (For simplicity, the columns omit sets when a particular iteration does not update the previous value.)

LV Sets	$Iterations \longrightarrow$				Final Values
$LV_{entry}(1)$	Ø	{y}			{y}
$LV_{entry}(2)$	Ø	{x}		$\{x,y\}$	$\{x,y\}$
$LV_{entry}(3)$	Ø		{y}		{y}
$LV_{entry}(4)$	Ø	$\{x,y\}$			$\{x,y\}$
$LV_{entry}(5)$	Ø	$\{x,y\}$			$\{x,y\}$
$LV_{entry}(6)$	Ø				Ø
$LV_{exit}(1)$	Ø	$\{x\}$		$\{x,y\}$	$\{x,y\}$
$LV_{exit}(2)$	Ø		{y}		{y}
$LV_{exit}(3)$	Ø	$\{x,y\}$			$\{x,y\}$
$LV_{exit}(4)$	Ø	$\{x,y\}$			$\{x,y\}$
$LV_{exit}(5)$	Ø	$\{x,y\}$			$\{x,y\}$
LV _{exit} (6)	Ø				Ø

iv. We eliminate blocks b of the form $[x := ...]^b$ if x is not an element of $LV_{exit}(b)$:

$$\begin{aligned} & [x := y]^1 \\ & [x := 4]^3 \\ & \text{while} & [y < x]^4 \, \text{do} \\ & [y := y + x]^5 \end{aligned}$$
 end

v. (*) The program is not yet free of dead variables: x in block 1 is still dead. We strengthen the definition of LV_{entry} :

$$\mathrm{LV}_{\mathrm{entry}}(b) = \left\{ \begin{array}{ll} (\mathrm{LV}_{\mathrm{exit}}(b) - \mathrm{kill}_{\mathrm{LV}}(b)) \cup \mathrm{gen}_{\mathrm{LV}}(b) & \text{ if } \mathrm{kill}_{\mathrm{LV}}(b) \subseteq \mathrm{LV}_{\mathrm{exit}}(b) \\ \mathrm{LV}_{\mathrm{exit}}(b) & \text{ otherwise} \end{array} \right.$$

The rationale is this: if a block assigns to a variable that is not live afterwards, then it must be eliminated, and should not influence the analysis by adding the variables it reads to the live variable set.

Performing a chaotic iteration with this new equation yields the following results:

LV Sets	Final Values
$LV_{entry}(1)$	{y}
$LV_{entry}(2)$	{y}
$LV_{entry}(3)$	{y}
$LV_{entry}(4)$	$\{x,y\}$
$LV_{entry}(5)$	$\{x,y\}$
LV _{entry} (6)	Ø
$LV_{exit}(1)$	{y}
$LV_{exit}(2)$	{y}
$LV_{exit}(3)$	$\{x,y\}$
$LV_{exit}(4)$	$\{x,y\}$
$LV_{exit}(5)$	$\{x,y\}$
$LV_{exit}(6)$	Ø

with which we can eliminate all of the dead code in the program:

$$\begin{aligned} & [\mathbf{x} \ := \ 4]^3 \\ & \text{while} \ [\mathbf{y} < \mathbf{x}]^4 \ \text{do} \\ & [\mathbf{y} \ := \ \mathbf{y} + \mathbf{x}]^5 \\ & \text{end} \end{aligned}$$