Problem Sheet 5: Model Checking Sample Solutions

Chris Poskitt and Carlo A. Furia ETH Zürich

1 Evaluating LTL Formulae on Automata

- i. Yes: whenever start occurs, stop must occur eventually since it is the only means of getting to the accepting state.
- ii. No: a counterexample is pull push.
- iii. Yes: the formula asserts that from every position in a word (if there are any), eventually either turn_off or push will occur. One of these events must occur to return to the accepting state.
- iv. No: the empty word is a counterexample ($\Diamond p$ demands the existence of a future position in the word for which p holds — the empty word cannot possibly satisfy it as it has no positions).
- v. Yes: if the word is empty, then it will satisfy the first disjunct ("always false" holds simply because there are no positions in the empty word to check against); if the word is non-empty, the final position in the word must be turn_off or push, and hence the second disjunct will be satisfied.
- vi. No: a counterexample is the empty word; or turn_on turn_off.

2 Equivalence of LTL Formulae

i.

	$w,i \models ext{true } U \ F$	
iff	for some $i \leq j \leq n$ we have $w, j \models F$	
	and for all $i \leq k < j$ we have $w, k \models$ true	[definition of until]
iff	for some $i \leq j \leq n$ we have $w, j \models F$	[semantics of true]

ii.

	$w,i \models \neg \Diamond \neg F$	
iff	$w,i\nvDash \Diamond \neg F$	[definition of not]
iff	it is not the case that for some $i \leq j \leq n$ we have $w, j \models \neg F$	[semantics of eventually]
iff	for all $i \leq j \leq n$ it is not the case that $w, j \models \neg F$	[semantics of quantifiers]
iff	for all $i \leq j \leq n$ it is not the case that $w, j \nvDash F$	[semantics of negation]
iff	for all $i \leq j \leq n, w, j \models F$	[simplify double negation]

iii.

	$w,i\models\Diamond\Diamond p$	
[semantics of eventually]	for some $i \leq j \leq n$ we have $w, j \models \Diamond p$	iff
[sem. eventually; merging intervals]	for some $i \leq j \leq h \leq n$ we have $w, h \models p$	iff
[a fortiori]	for some $i \leq h \leq n$ we have $w, h \models p$	iff
[semantics of eventually]	$w,i \models \Diamond p$	iff

3 Automata-Based Model Checking

i. The automaton we build from the temporal formula is the following.

ii. The intersection automaton is the following:

iii. Any accepting run is a counterexample to the LTL formula being a property of the microwave oven automaton. There are several, for example: pull push, pull push pull push, ...