Problem Sheet 5: Model Checking
Sample Solutions

Chris Poskitt and Carlo A. Furia
ETH Zürich

1 Evaluating LTL Formulae on Automata

i. Yes: whenever start occurs, stop must occur eventually since it is the only means of getting to the accepting state.

ii. No: a counterexample is pull push.

iii. Yes: the formula asserts that from every position in a word (if there are any), eventually either turn off or push will occur. One of these events must occur to return to the accepting state.

iv. No: the empty word is a counterexample (◊ p demands the existence of a future position in the word for which p holds — the empty word cannot possibly satisfy it as it has no positions).

v. Yes: if the word is empty, then it will satisfy the first disjunct (“always false” holds simply because there are no positions in the empty word to check against); if the word is non-empty, the final position in the word must be turn off or push, and hence the second disjunct will be satisfied.

vi. No: a counterexample is the empty word; or turn on turn off.
2 Equivalence of LTL Formulae

i.
\[w, i \models \text{true} \cup F \]
iff for some \(i \leq j \leq n \) we have \(w, j \models F \)
and for all \(i \leq k < j \) we have \(w, k \models \text{true} \) \[[definition of until]\]
iff for some \(i \leq j \leq n \) we have \(w, j \models F \) \[[semantics of true]\]

ii.
\[w, i \models \neg \diamond \neg F \]
iff \(w, i \not\models \diamond \neg F \) \[[definition of not]\]
iff it is not the case that for some \(i \leq j \leq n \) we have \(w, j \models \neg F \) \[[semantics of eventually]\]
iff for all \(i \leq j \leq n \) it is not the case that \(w, j \not\models \neg F \) \[[semantics of quantifiers]\]
iff for all \(i \leq j \leq n \) it is not the case that \(w, j \not\models F \) \[[semantics of negation]\]
iff for all \(i \leq j \leq n \), \(w, j \models F \) \[[simplify double negation]\]

iii.
\[w, i \models \diamond \diamond p \]
iff for some \(i \leq j \leq n \) we have \(w, j \models \diamond p \) \[[semantics of eventually]\]
iff for some \(i \leq j \leq h \leq n \) we have \(w, h \models p \) \[[sem. eventually; merging intervals]\]
iff for some \(i \leq h \leq n \) we have \(w, h \models p \) \[[a fortiori]\]
iff \(w, i \models \diamond p \) \[[semantics of eventually]\]
3 Automata-Based Model Checking

i. The automaton we build from the temporal formula is the following.

\[
\neg (\Diamond \neg \text{turn_off})
\]

ii. The intersection automaton is the following:

iii. Any accepting run is a counterexample to the LTL formula being a property of the microwave oven automaton. There are several, for example: pull push, pull push pull push, ...