ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Autumn 2015

Problem Sheet 6: Software Model Checking
Sample Solutions

Chris Poskitt*
ETH Ziirich

1 Predicate Abstraction

i. Let us first visualise ¢ and not c¢ in a Venn diagram:

not ¢

Pred(not ¢) gives the weakest under-approximation of not ¢. Note that Pred(not c)
implies not ¢, but not ¢ does not (in general) imply Pred(not ¢). A possible visualisation
in a Venn diagram might then be:

Pred(not ¢)

By negating Pred(not ¢), we get the strongest over-approximation, visualised as follows:

Pred(not ¢)

not Pred(not ¢)

*Some exercises were adapted from earlier ones written by Stephan van Staden and Carlo A. Furia.



ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Autumn 2015

ii. We build a Boolean abstraction from C7, one line at a time. First, we over-approximate
assume x > 0 end with assume —Pred(—x > 0) end, followed by a parallel conditional
assignment updating the predicates with respect to the original assume statement.

—Pred(—x > 0) = =(-p)
=D

Hence we add assume p end to A;. This should be followed by a parallel conditional
assignment (as described in the slides):

if Pred(+ex(i)) then
p(i) := True

elseif Pred(-ex(i)) then
p(i) := False

else
p(i) =7

end

Using the axiom F {¢ = post} assume ¢ end {post} for the weakest precondition of assume
statements, which instantiates to - {x > 0 = post} assume z > 0 end {post}, we compute
every +/— ex(i) for predicates i:

+ex(p)=(x>0=2>0)
—ex(p) = (z>0= -z >0)
+ex(q z>0=y>0)

—ex(q x>0=-y>0)

+

—Eex\T

= (
= (
(q) = (
(q) = (
ex(r) = (
(r) =

x>0=-z>0)

We apply the simplification step from the slides, and consider only the branches that
correspond to a +/ — ex(i) that is valid. It so happens that only +ex(p) is valid, so we
compute:

Pred(+ex(p)) = Pred(z > 0=z >0) = —pVp=true

resulting in the parallel conditional assignment:

if True then
p := True
else
p =7
end

This simplifies even further to p := True, which we add to A;.



ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Autumn 2015

Next, we address the assignment z := (x*y)+ 1. Recall that an assignment z := f is
over-approximated by a parallel conditional assignment:

if Pred(+f(i)) then
p(i) := True

elseif Pred(-f(i)) then
p(i) := False

else
p(i) =7

end

Using the axiom - {post[f/x]} x := f {post}, which instantiates to - {post|[(x xy) + 1/z]} z :=
(x*y) + 1 {post}, and the definition of +/— f(i) for predicates i, we get:

Pred(+f(p)) = Pred(x > 0)
=P
Pred(—f(p)) = Pred(—z > 0)
=-p
Pred(+f(q)) = Pred(y > 0)
=q
Pred(—f(q)) = Pred(—y > 0)
=q
Pred(+f(r)) = Pred((z*xy) +1 > 0)
= @AV (pA-g)
Pred(—f(r)) = Pred(—(z *y) +1 > 0)
= Pred((z*y)+1<0)

= false

The parallel conditional assignments for p, ¢ have no effect, hence we add only the following
to Ali

if (p and q) or (not p and not q) then

r := True
elseif False then

r := False
else

r =7
end

Finally, we address the assertion assert z >= 1 end. The Boolean abstraction is simply
assert Pred(z > 1) end. We have:

Pred(z>1)=r

and hence add assert r end to A;.



ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Autumn 2015

Altogether, A; is the following program:

assume p end
p := True

if (p and q) or (not p and not q) then

r := True
elseif False then

r := False
else

r =7
end

assert r end
With a further simplification, we get:

assume p end
p := True

if (p and q) or (not p and not q) then
r := True
else

end

assert r end



ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Autumn 2015

ili. (a) After normalising the program (following the details in the slides) we get:

if ? then
assume x > 0 end
y 1= X + X
else
assume x <= 0 end
if ? then
assume x = 0 end
y :=1
else
assume x /= 0 end
y 1= X * X
end
end
assert y > 0 end

(b) To build Ay from the normalised code above, apply the transformations to each as-
signment, assume, and assert, analogously to how I did when constructing A; (except
that this time you only have two predicates, p and ¢). The resulting abstraction (after
some simplifications) should be equivalent to this:

if 7 then
assume p end
p := True
q := True
else
assume not p end
p := False
if ? then
assume not p end
p := False
q := True
else
assume True end -- can delete this assume
q:=7
end

end
assert q end



ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Autumn 2015

2 Error Traces

i. An abstract error trace is:

[p, not q, r]
assume p end
[p, not q, rl

p := True
[p, not q, r]
r =7

[p, not g, not r]
assert r end

Observe that each concrete instruction corresponds to a (compound) abstract instruction.
We can check whether or not this is a feasible concrete run by computing the weakest
precondition of the concrete instructions with respect to pA—gA—r, interpreting conditions
(assume, conditionals, or exit conditions) as asserts. Recall that the weakest preconditions
of assert statements can be computed using F {c A post} assert ¢ end {post}.
{x > 0 and y <= 0 and (xxy)+1 <= 0%}
{x >0 and (x > 0 and y <= 0 and (x*y)+1 <= 0)}
assert x > 0 end
{x > 0 and y <= 0 and (x*y)+1 <= 0}
z = (x*xy) + 1
{x >0 and y <= 0 and z <= 0}
[p, not g, not r]

Executing the concrete program on a state s such that

sEx>0ANy<O0A(xxy)+1<0

will reveal the fault. One possible input state (of many) is s = {z +— 3,y — =2,z — _}.

ii. Here is an abstract counterexample trace:

[not p, not ql

assume not p end
[not p, not ql

p := False
[not p, not ql

assume True end
[not p, not q]

q:=7
[not p, not ql

assert q end

As before, we check whether or not this abstract execution reflects a feasible, concrete
counterexample, by computing the weakest precondition of the corresponding concrete
instructions with respect to =p A —q. Again, we interpret conditions (assumes in this case)
as asserts, and apply the corresponding Hoare logic axioms:



ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Autumn 2015

{x < 0 and x*x <= 0}

{x <= 0 and (x /= 0 and (x <= 0 and x*x <= 0))}
assert x <= 0

{x /= 0 and (x <= 0 and x*x <= 0)}
assert x /= 0 end

{x <= 0 and x*x <= 0}
Y 1= X*X

{x <= 0 and y <= 0}

[not p, not q]

Observe that in this case, the weakest precondition we have constructed is equivalent to
false. There is no assignment to x that will satisfy the assertion. Hence the abstract
counterexample is infeasible (spurious) in the concrete program; abstraction refinement is
needed.



	Predicate Abstraction
	Error Traces

