
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Problem Sheet 6: Software Model Checking

Sample Solutions

Chris Poskitt∗

ETH Zürich

1 Predicate Abstraction

i. Let us first visualise c and not c in a Venn diagram:

c

not c

Pred(not c) gives the weakest under-approximation of not c. Note that Pred(not c)
implies not c, but not c does not (in general) imply Pred(not c). A possible visualisation
in a Venn diagram might then be:

c

Pred(not c)

By negating Pred(not c), we get the strongest over-approximation, visualised as follows:

c

Pred(not c)

not Pred(not c)

∗Some exercises were adapted from earlier ones written by Stephan van Staden and Carlo A. Furia.

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

ii. We build a Boolean abstraction from C1, one line at a time. First, we over-approximate
assume x > 0 end with assume ¬Pred(¬x > 0) end, followed by a parallel conditional
assignment updating the predicates with respect to the original assume statement.

¬Pred(¬x > 0) = ¬(¬p)

= p

Hence we add assume p end to A1. This should be followed by a parallel conditional
assignment (as described in the slides):

if Pred(+ex(i)) then

p(i) := True

elseif Pred(-ex(i)) then

p(i) := False

else

p(i) := ?

end

Using the axiom ` {c⇒ post} assume c end {post} for the weakest precondition of assume
statements, which instantiates to ` {x > 0⇒ post} assume x > 0 end {post}, we compute
every +/− ex(i) for predicates i:

+ex(p) = (x > 0⇒ x > 0)

−ex(p) = (x > 0⇒ ¬x > 0)

+ex(q) = (x > 0⇒ y > 0)

−ex(q) = (x > 0⇒ ¬y > 0)

+ex(r) = (x > 0⇒ z > 0)

−ex(r) = (x > 0⇒ ¬z > 0)

We apply the simplification step from the slides, and consider only the branches that
correspond to a +/− ex(i) that is valid. It so happens that only +ex(p) is valid, so we
compute:

Pred(+ex(p)) = Pred(x > 0⇒ x > 0) = ¬p ∨ p = true

resulting in the parallel conditional assignment:

if True then

p := True

else

p := ?

end

This simplifies even further to p := True, which we add to A1.

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Next, we address the assignment z := (x ∗ y) + 1. Recall that an assignment x := f is
over-approximated by a parallel conditional assignment:

if Pred(+f(i)) then

p(i) := True

elseif Pred(-f(i)) then

p(i) := False

else

p(i) := ?

end

Using the axiom ` {post[f/x]} x := f {post}, which instantiates to ` {post[(x ∗ y) + 1/z]} z :=
(x ∗ y) + 1 {post}, and the definition of +/− f(i) for predicates i, we get:

Pred(+f(p)) = Pred(x > 0)

= p

Pred(−f(p)) = Pred(¬x > 0)

= ¬p
Pred(+f(q)) = Pred(y > 0)

= q

Pred(−f(q)) = Pred(¬y > 0)

= ¬q
Pred(+f(r)) = Pred((x ∗ y) + 1 > 0)

= (p ∧ q) ∨ (¬p ∧ ¬q)

Pred(−f(r)) = Pred(¬(x ∗ y) + 1 > 0)

= Pred((x ∗ y) + 1 ≤ 0)

= false

The parallel conditional assignments for p, q have no effect, hence we add only the following
to A1:

if (p and q) or (not p and not q) then

r := True

elseif False then

r := False

else

r := ?

end

Finally, we address the assertion assert z >= 1 end. The Boolean abstraction is simply
assert Pred(z ≥ 1) end. We have:

Pred(z ≥ 1) = r

and hence add assert r end to A1.

3



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Altogether, A1 is the following program:

assume p end

p := True

if (p and q) or (not p and not q) then

r := True

elseif False then

r := False

else

r := ?

end

assert r end

With a further simplification, we get:

assume p end

p := True

if (p and q) or (not p and not q) then

r := True

else

r := ?

end

assert r end

4



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

iii. (a) After normalising the program (following the details in the slides) we get:

if ? then

assume x > 0 end

y := x + x

else

assume x <= 0 end

if ? then

assume x = 0 end

y := 1

else

assume x /= 0 end

y := x * x

end

end

assert y > 0 end

(b) To build A2 from the normalised code above, apply the transformations to each as-
signment, assume, and assert, analogously to how I did when constructing A1 (except
that this time you only have two predicates, p and q). The resulting abstraction (after
some simplifications) should be equivalent to this:

if ? then

assume p end

p := True

q := True

else

assume not p end

p := False

if ? then

assume not p end

p := False

q := True

else

assume True end -- can delete this assume

q := ?

end

end

assert q end

5



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

2 Error Traces

i. An abstract error trace is:

[p, not q, r]

assume p end

[p, not q, r]

p := True

[p, not q, r]

r := ?

[p, not q, not r]

assert r end

Observe that each concrete instruction corresponds to a (compound) abstract instruction.
We can check whether or not this is a feasible concrete run by computing the weakest
precondition of the concrete instructions with respect to p∧¬q∧¬r, interpreting conditions
(assume, conditionals, or exit conditions) as asserts. Recall that the weakest preconditions
of assert statements can be computed using ` {c ∧ post} assert c end {post}.

{x > 0 and y <= 0 and (x*y)+1 <= 0}

{x > 0 and (x > 0 and y <= 0 and (x*y)+1 <= 0)}

assert x > 0 end

{x > 0 and y <= 0 and (x*y)+1 <= 0}

z := (x*y) + 1

{x > 0 and y <= 0 and z <= 0}

[p, not q, not r]

Executing the concrete program on a state s such that

s |= x > 0 ∧ y ≤ 0 ∧ (x ∗ y) + 1 ≤ 0

will reveal the fault. One possible input state (of many) is s = {x 7→ 3, y 7→ −2, z 7→ }.

ii. Here is an abstract counterexample trace:

[not p, not q]

assume not p end

[not p, not q]

p := False

[not p, not q]

assume True end

[not p, not q]

q := ?

[not p, not q]

assert q end

As before, we check whether or not this abstract execution reflects a feasible, concrete
counterexample, by computing the weakest precondition of the corresponding concrete
instructions with respect to ¬p∧¬q. Again, we interpret conditions (assumes in this case)
as asserts, and apply the corresponding Hoare logic axioms:

6



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

{x < 0 and x*x <= 0}

{x <= 0 and (x /= 0 and (x <= 0 and x*x <= 0))}

assert x <= 0

{x /= 0 and (x <= 0 and x*x <= 0)}

assert x /= 0 end

{x <= 0 and x*x <= 0}

y := x*x

{x <= 0 and y <= 0}

[not p, not q]

Observe that in this case, the weakest precondition we have constructed is equivalent to
false. There is no assignment to x that will satisfy the assertion. Hence the abstract
counterexample is infeasible (spurious) in the concrete program; abstraction refinement is
needed.

7


	Predicate Abstraction
	Error Traces

