Problem Sheet 6: Software Model Checking Sample Solutions

Chris Poskitt*
ETH Zürich

1 Predicate Abstraction

i. Let us first visualise c and not c in a Venn diagram:

$\operatorname{Pred}($ not $c)$ gives the weakest under-approximation of not c. Note that $\operatorname{Pred}($ not $c)$ implies not c, but not c does not (in general) imply Pred(not c). A possible visualisation in a Venn diagram might then be:

By negating Pred(not $c)$, we get the strongest over-approximation, visualised as follows:

[^0]ii. We build a Boolean abstraction from C_{1}, one line at a time. First, we over-approximate assume $\mathrm{x}>0$ end with assume $\neg \operatorname{Pred}(\neg \mathrm{x}>0)$ end, followed by a parallel conditional assignment updating the predicates with respect to the original assume statement.
\[

$$
\begin{aligned}
\neg \operatorname{Pred}(\neg \mathrm{x}>0) & =\neg(\neg p) \\
& =p
\end{aligned}
$$
\]

Hence we add assume p end to A_{1}. This should be followed by a parallel conditional assignment (as described in the slides):

```
if Pred(+ex(i)) then
    p(i) := True
elseif Pred(-ex(i)) then
    p(i) := False
else
    p(i) := ?
end
```

Using the axiom $\vdash\{c \Rightarrow$ post $\}$ assume c end $\{$ post $\}$ for the weakest precondition of assume statements, which instantiates to $\vdash\{x>0 \Rightarrow$ post $\}$ assume $x>0$ end \{post $\}$, we compute every $+/-e x(i)$ for predicates i :

$$
\begin{aligned}
& +e x(p)=(x>0 \Rightarrow x>0) \\
& -e x(p)=(x>0 \Rightarrow \neg x>0) \\
& +e x(q)=(x>0 \Rightarrow y>0) \\
& -e x(q)=(x>0 \Rightarrow \neg y>0) \\
& +e x(r)=(x>0 \Rightarrow z>0) \\
& -e x(r)=(x>0 \Rightarrow \neg z>0)
\end{aligned}
$$

We apply the simplification step from the slides, and consider only the branches that correspond to a $+/-e x(i)$ that is valid. It so happens that only $+e x(p)$ is valid, so we compute:

$$
\operatorname{Pred}(+e x(p))=\operatorname{Pred}(x>0 \Rightarrow x>0)=\neg p \vee p=\text { true }
$$

resulting in the parallel conditional assignment:

```
if True then
    p := True
else
    p := ?
end
```

This simplifies even further to $\mathrm{p}:=$ True, which we add to A_{1}.

Next, we address the assignment $\mathbf{z}:=(\mathrm{x} * \mathrm{y})+1$. Recall that an assignment $x:=f$ is over-approximated by a parallel conditional assignment:

```
if Pred(+f(i)) then
    p(i) := True
elseif Pred(-f(i)) then
        p(i) := False
else
    p(i) := ?
end
```

Using the axiom $\vdash\{\operatorname{post}[f / x]\} x:=f\{\operatorname{post}\}$, which instantiates to $\vdash\{\operatorname{post}[(\mathrm{x} * \mathrm{y})+1 / \mathrm{z}]\} \mathrm{z}:=$ $(\mathrm{x} * \mathrm{y})+1\{p o s t\}$, and the definition of $+/-f(i)$ for predicates i, we get:

$$
\begin{aligned}
\operatorname{Pred}(+f(p)) & =\operatorname{Pred}(x>0) \\
& =p \\
\operatorname{Pred}(-f(p)) & =\operatorname{Pred}(\neg x>0) \\
& =\neg p \\
\operatorname{Pred}(+f(q)) & =\operatorname{Pred}(y>0) \\
& =q \\
\operatorname{Pred}(-f(q)) & =\operatorname{Pred}(\neg y>0) \\
& =\neg q \\
\operatorname{Pred}(+f(r)) & =\operatorname{Pred}((x * y)+1>0) \\
& =(p \wedge q) \vee(\neg p \wedge \neg q) \\
\operatorname{Pred}(-f(r)) & =\operatorname{Pred}(\neg(x * y)+1>0) \\
& =\operatorname{Pred}((x * y)+1 \leq 0) \\
& =\text { false }
\end{aligned}
$$

The parallel conditional assignments for p, q have no effect, hence we add only the following to A_{1} :

```
if (p and q) or (not p and not q) then
    r := True
elseif False then
    r := False
else
    r := ?
end
```

Finally, we address the assertion assert $z>=1$ end. The Boolean abstraction is simply assert $\operatorname{Pred}(z \geq 1)$ end. We have:

$$
\operatorname{Pred}(z \geq 1)=r
$$

and hence add assert r end to A_{1}.

Altogether, A_{1} is the following program:

```
assume p end
p := True
if (p and q) or (not p and not q) then
    r := True
elseif False then
    r := False
else
    r := ?
end
assert r end
```

With a further simplification, we get:

```
assume p end
p := True
if (p and q) or (not p and not q) then
    r := True
else
    r := ?
end
assert r end
```

iii. (a) After normalising the program (following the details in the slides) we get:

```
if ? then
    assume x > 0 end
    y := x + x
else
    assume x <= 0 end
    if ? then
            assume x = 0 end
            y := 1
    else
        assume x /= 0 end
        y := x * x
    end
end
assert y > 0 end
```

(b) To build A_{2} from the normalised code above, apply the transformations to each assignment, assume, and assert, analogously to how I did when constructing A_{1} (except that this time you only have two predicates, p and q). The resulting abstraction (after some simplifications) should be equivalent to this:

```
if ? then
    assume p end
    p := True
    q := True
else
    assume not p end
    p := False
    if ? then
        assume not p end
        p := False
        q := True
    else
        assume True end -- can delete this assume
        q := ?
    end
end
assert q end
```


2 Error Traces

i. An abstract error trace is:

```
[p, not q, r]
    assume p end
[p, not q, r]
    p := True
[p, not q, r]
    r := ?
[p, not q, not r]
    assert r end
```

Observe that each concrete instruction corresponds to a (compound) abstract instruction. We can check whether or not this is a feasible concrete run by computing the weakest precondition of the concrete instructions with respect to $p \wedge \neg q \wedge \neg r$, interpreting conditions (assume, conditionals, or exit conditions) as asserts. Recall that the weakest preconditions of assert statements can be computed using $\vdash\{c \wedge$ post $\}$ assert c end \{post $\}$.

```
{x>0 and y <= 0 and (x*y)+1 <= 0}
{x>0 and (x > 0 and y <= 0 and (x*y)+1<= 0)}
    assert x > 0 end
{x > 0 and y <= 0 and ( }\textrm{x}*\textrm{y})+1<=0
    z := (x*y) + 1
{x > 0 and y <= 0 and z<= 0}
[p, not q, not r]
```

Executing the concrete program on a state s such that

$$
s \models x>0 \wedge y \leq 0 \wedge(x * y)+1 \leq 0
$$

will reveal the fault. One possible input state (of many) is $s=\left\{x \mapsto 3, y \mapsto-2, z \mapsto{ }_{-}\right\}$.
ii. Here is an abstract counterexample trace:

```
[not p, not q]
    assume not p end
[not p, not q]
    p := False
[not p, not q]
    assume True end
[not p, not q]
    q := ?
[not p, not q]
    assert q end
```

As before, we check whether or not this abstract execution reflects a feasible, concrete counterexample, by computing the weakest precondition of the corresponding concrete instructions with respect to $\neg p \wedge \neg q$. Again, we interpret conditions (assumes in this case) as asserts, and apply the corresponding Hoare logic axioms:

```
{x<0 and x*x<= 0}
{x<= 0 and (x /= 0 and ( }\textrm{x}<=0\mathrm{ and }\textrm{x}*\textrm{x}<=0))
    assert x <= 0
{x /= 0 and ( }\textrm{x}<=0\mathrm{ and }\textrm{x}*\textrm{x}<=0)
    assert x /= 0 end
{x <= 0 and x*x <= 0}
    y := x*x
{x <= 0 and y <= 0}
[not p, not q]
```

Observe that in this case, the weakest precondition we have constructed is equivalent to false. There is no assignment to x that will satisfy the assertion. Hence the abstract counterexample is infeasible (spurious) in the concrete program; abstraction refinement is needed.

[^0]: *Some exercises were adapted from earlier ones written by Stephan van Staden and Carlo A. Furia.

