
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Problem Sheet 7: Verification of Real-Time Systems

Sample Solutions

Carlo A. Furia and Chris Poskitt
ETH Zürich

Starred exercises (∗) are more challenging than the others.

1 MTL Property Checking

i. Yes: it simply means that a holds at every position (if any) of accepted timed words.

ii. No: this requires that relative to every position (if any) of accepted timed words, a occurs 1
time unit in the future; but this cannot be the case for the last position of any (non-empty)
timed word. (The only position that can be reasoned about relative to the end position
is the end position, which is exactly 0 time units in the future.) A counterexample is the
timed word (a, 1.0) (a, 2.0).

iii. Yes: the formula requires that if there is a future position 1 time unit in the future, then
a holds there.

iv. Yes: the clock x is reset after reading a, then to reach an accepting state, c must occur
within the range (0, 1) because of the clock constraint 0 < x < 1.

v. Yes: as above, noting that b must occur before c.

vi. Yes: as above. It expresses that after reading a, c must occur within the range (0, 1), and
until then, only a or b may occur (only the latter does).

vii. No. A counterexample is the timed word (a, 1.0) (b, 1.2) (c, 1.3).

2 Region Automaton Construction

i. First, draw the clock regions associated with the timed automaton. Since there is only
one clock x, and because the maximum constant in the clock constraints is 1, our diagram
is very simple:

0 1
x

The initial and accepting state of the region automaton will be (S1, x = 0). To determine
the outgoing edges from this state, we first determine the time successors of the region
x = 0. This is the set of clock regions that can be reached from x = 0 by letting time
pass, i.e.

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

0 < x < 1

x = 1

x > 1

(We don’t break x > 1 into smaller clock regions because the largest constant in the clock
constraints is 1.)

In the original timed automaton, we can reach state S2 from S1 when x = 1 and the next
position of the timed word is a. One might think that we should therefore add an edge
from (S1, x = 0) to (S2, x = 1) on a. However, the original automaton resets x to 0, so
instead of adding an edge to (S2, x = 1), we add an edge to (S2, x = 0), i.e.

S1, x=0

S2, x=0

a

Through similar reasoning, for the other edge in the original timed automaton, we complete
the region automaton (omitting the non-reachable states):

S1, x=0

S2, x=0

a a

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

ii. Following the same process used for the previous question, we get the (somewhat larger!)
region automaton below. You can construct it more efficiently by noting that at least one
clock is reset on each transition (e.g. for the first transition, the corresponding regions will
all have x = 0 but varying y).

22 

Build the region automaton for: 

iii. (∗)

24 

Build the region automaton for: 

Example from: Alur & Dill, 1994 

3 Semantics of MTL Formulae

i. The empty word satisfies � ♦ > 0 true, but the same is not true for non-empty words
(♦>0 true does not hold relative to the final position, since there are no positions greater
than 0 time units in the future).

ii. The formula � ♦ ≥ 0 true is satisfied by any word. For such a word w, the relation
w, i |= ♦ ≥ 0 true must hold for all positions i in w, i.e. there is some j ≥ i such that
w, j |= true. Clearly this is the case because we can always take j = i.

iii. The formulae are not in general equivalent. Let w = (p, 4) (q, 8) and a = 1, b = 2, c =
3, d = 6. Then w |= ♦[a+ c, b+ d] q = ♦[4, 8] q, but w 2 ♦[a, b] ♦[c, d] q = ♦[1, 2] ♦[3, 6] q.

3


	MTL Property Checking
	Region Automaton Construction
	Semantics of MTL Formulae

